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In this part…
 ✓ Use confidence intervals to provide a range of possible values 

for a population parameter; these can be constructed for any 
population parameter: mean, variance, standard deviation, and 
so on. 

 ✓ Use t-distribution to describe the statistical properties of sample 
means that are estimated from small samples; use standard 
normal distribution is for large samples.

 ✓ Draw conclusions about population properties — from a single 
population variance to multiple population variances — with 
hypothesis testing

 ✓ Test multiple population means with a special new technique 
called Analysis of Variance (ANOVA). This technique can be 
used to evaluate claims about the effectiveness of competing 
products, or identify the most profitable products to produce.



Chapter 11

Confidence Intervals and the 
Student’s t-Distribution

In This Chapter
▶ Getting familiar with the t-distribution
▶ Developing techniques for constructing confidence intervals

A 
 confidence interval is a range of numbers that’s likely to contain the 
true value of an unknown population parameter, such as the population 

mean. (Parameters are numerical values that describe the properties of a 
population; they are discussed in Chapter 10.)

Here’s an example. Suppose you are asked to estimate how long it takes to 
commute to work each day. You respond by saying, “On average, it takes 
about 20 minutes to get to work.” This estimate may be useful, but it doesn’t 
give any indication how much your commuting time may vary from one day 
to the next.

Suppose instead you respond by saying “Most days, it takes between 15 and 
25 minutes to get to work.” This range of values is more meaningful than the 
estimated average time of 20 minutes. With this interval, it’s clear that the 
average commute time is 20 minutes (because this is halfway between 15 and 
25 minutes.) In addition, the numbers tell you that it’ll be an unusual day if 
your commuting time is more than 25 minutes or fewer than 15 minutes.

This range of estimated values is known as a confidence interval. The starting 
point in constructing a confidence interval is the estimated mean or average, 
which is 20 minutes in this example. The next step is to construct a margin 
of error, which represents the degree of uncertainty associated with the esti-
mated mean. In this example, the margin of error is five minutes.

Confidence intervals may be constructed for any population parameter: mean, 
variance, standard deviation, etc. This chapter covers the techniques that are 
used to estimate confidence intervals for the population mean. These techniques 
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are based on one of two probability distributions. One of these is the standard 
normal distribution (which I cover in detail in Chapter 9). The other is known 
as the Student’s t-distribution (also known simply as the t-distribution) — which I 
introduce in this chapter. 

Almost Normal: The Student’s 
 t-Distribution

The purpose of the t-distribution is to describe the statistical properties of 
sample means that are estimated from small samples; the standard normal 
distribution is used for large samples.

The means of small samples are likely to vary more dramatically from one 
sample to the next than the means of large samples. (In a small sample, a 
single observation that is unusually large or small will have a greater impact 
on the sample mean than it would in a larger sample.) It therefore makes 
sense that different probability distributions should be used to describe the 
properties of small and large sample means.

Properties of the t-distribution
The t-distribution shares a few key properties with the standard normal 
 distribution (which is discussed in Chapter 9).

Properties shared by the t-distribution and  
the standard normal distribution
The properties shared by the t-distribution and the standard normal distribu-
tion are as follows:

 ✓ They have a mean of 0.

 ✓ They’re symmetric about the mean (that is, the area below the mean is a 
mirror image of the area above the mean).

 ✓ They can be described graphically with a bell-shaped curve.

Several key differences also exist between the two distributions, including 
the following:

 ✓ The t-distribution has more area in the “tails,” and less area near the 
mean than the standard normal distribution.

 ✓ The variance and standard deviation of the t-distribution are larger than 
those of the standard normal distribution.
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The larger variance and standard deviation in the t-distribution reflect that 
much more variability occurs among the means of small samples than among 
the means of large samples.

Degrees of freedom
As with the normal distribution, the t-distribution is an infinite family of dis-
tributions. Whereas the mean and standard deviation uniquely identify each 
normal distribution, each t-distribution is characterized by a value known as 
degrees of freedom (df). 

When you’re estimating the sample mean, the number of degrees of freedom 
for the t-distribution equals the number of sample members that can vary. 
For example, if you choose a sample of size n to estimate the sample mean ,  
the corresponding t-distribution has n – 1 degrees of freedom because the 
combination of n – 1 elements in the sample plus the sample mean uniquely 
identify the last element in the sample. Therefore, you have only n – 1 inde-
pendent variables in the sample.

Suppose you choose a sample of three students to estimate the mean GPA 
of a university. If the sample mean, , equals 3.0, the first student’s GPA is 
2.5, the second student’s GPA is 3.5, and the third student’s GPA must be 3.0 
because the sum of the GPAs must be 9.0 for the sample mean to be 3.0. As a 
result, the GPAs of any two students in this sample, along with the value of ,  
uniquely determine the value of the third student’s GPA. Therefore, the cor-
responding t-distribution has two degrees of freedom.

Moments of the t-distribution
A moment is a summary measure of a probability distribution (see Chapter 7 
for a detailed explanation on moments). Probability distributions, including 
the t-distribution, have several moments, including:

 ✓ The first moment of a distribution is the expected value, E(X), which 
represents the mean or average value of the distribution.

  For the t-distribution with ν degrees of freedom, the mean (or expected 
value) equals . μ represents the mean of a population or 
a probability distribution, and ν commonly designates the number of 
degrees of freedom of a distribution.

 ✓ The second central moment is the variance (σ2), and it measures the 
spread of the distribution about the expected value. The more spread 
out a distribution is, the more “stretched out” is the graph of the distri-
bution. In other words, the tails will be further from the mean, and the 
area near the mean will be smaller. For example, based on Figures 11-1 
and 11-3, it can be seen that the t-distribution with 2 degrees of freedom 
is far more spread out than the t-distribution with 30 degrees of freedom. 

  You use the formula  to calculate the variance of the  
t-distribution.



190 Part III: Drawing Conclusions from Samples  

As an example, with 10 degrees of freedom, the variance of the t-distribution 
is computed by substituting 10 for ν in the variance formula:

With 30 degrees of freedom, the variance of the t-distribution equals

These calculations show that as the degrees of freedom increases, the vari-
ance of the t-distribution declines, getting progressively closer to 1.

 ✓ The standard deviation is the square root of the variance (σ). (It is not a 
separate moment.)

  For the t-distribution, you find the standard deviation with this formula:

  

 For most applications, the standard deviation is a more useful measure than 
the variance because the standard deviation and expected value are measured 
in the same units while the variance is measured in squared units. For example, 
suppose you assume that the returns on a portfolio follow the t-distribution. 
You measure both the expected value of the returns and the standard devia-
tion as a percentage; you measure the variance as a squared percentage, which 
is a difficult concept to interpret.

Graphing the t-distribution
One of the interesting properties of the t-distribution is that the greater 
the degrees of freedom, the more closely the t-distribution resembles the 
standard normal distribution. As the degrees of freedom increases, the area 
in the tails of the t-distribution decreases while the area near the center 
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increases. (The tails consists of the extreme values of the distribution, both 
negative and positive.) Eventually, when the degrees of freedom reaches 
30 or more, the t-distribution and the standard normal distribution are 
extremely similar.

Figures 11-1, 11-2, and 11-3 illustrate the relationship between the 
 t-distribution with different degrees of freedom and the standard normal dis-
tribution. Figure 11-1 shows the standard normal and the t-distribution with 
two degrees of freedom (df). Notice how the t-distribution is significantly 
more spread out than the standard normal distribution. 

The graph in Figure 11-1 shows that the t-distribution has more area in the tails 
and less area around the mean than the standard normal distribution. (The 
standard normal distribution curve is shown with square markers.) As a result, 
more extreme observations (positive and negative) are likely to occur under 
the t-distribution than under the standard normal distribution. 

 

Figure 11-1: 
The stan-

dard normal 
and  

t-distribution  
with two 

degrees of 
freedom.

 

Figure 11-2 compares the standard normal distribution with the t-distribution 
with ten degrees of freedom. The two are much closer to each other here 
than in Figure 11-1.
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Figure 11-2: 
The stan-

dard normal 
and  

t-distribution 
with ten 

degrees of 
freedom.

 

As you can see in Figure 11-3, with 30 degrees of freedom, the t-distribution 
and the standard normal distribution are almost indistinguishable. 

 

Figure 11-3: 
The stan-

dard normal 
and  

t-distribution 
with 30 

degrees of 
freedom.
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Probabilities and the t-table
The t-table is used to show probabilities for the t-distribution. The top row of 
the t-table lists different values of tα, where the right tail of the t-distribution 
has a probability (area) equal to α (“alpha”). Table 11-1 is an excerpt from 
the full t-table.

Table 11-1 The t-Table
Degrees of 
Freedom

t0.10 t0.05 t0.025 t0.01 t0.005

8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169

Table 11-1 shows that with ten degrees of freedom and with α = 0.05, tα = 
1.812. So the right 5 percent tail of the distribution is located 1.812 standard 
deviations above the mean. 

Alternatively, assume X is a random variable that follows the t-distribution with 
10 degrees of freedom. (Random variables are discussed in Chapter 7.) In this 
case, P(X ≥ 1.812) = 0.05. This is equivalent to saying the area under the curve 
to the right of 1.812 is 0.05, or 5 percent of the total area (see Figure 11-4).

 

Figure 11-4: 
The  

t-distribution 
with 10 

degrees of 
freedom.
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The shaded region starts at 1.812, which represents 1.812 standard devia-
tions above the mean. The total area of the shaded region is 0.05 or 5 per-
cent; therefore, the probability that a t-distributed random variable with 
10 degrees of freedom exceeds 1.812 is 5 percent.

Point estimates vs. interval estimates
When you don’t know the mean, standard deviation, variance, and other sum-
mary measures of a population, you need to estimate them from a sample.

To estimate the mean of a population, you use the mean of a sample drawn 
from the population. You express the sample mean as  (“X bar”). In a simi-
lar manner, to estimate the variance of a population, you use the sample vari-
ance, s2. And you estimate the standard deviation of a population with the 
sample standard deviation, s. (I cover techniques for estimating the sample 
variance and standard deviation in Chapter 4.)

These sample measures are formally known as point estimators — formulas 
that help estimate a population measure. For example,  is a point estimator 
of the population mean μ. The numerical value of  is a point estimate.

 The distinction between estimator and estimate seems very subtle — an esti-
mator is a formula, and an estimate is a numerical value.

The usefulness of a point estimator (formula) is limited by the fact that it pro-
duces only a single number. Suppose a portfolio manager wants to estimate 
the mean annual return of a stock he holds by choosing a sample of histori-
cal returns and calculating the sample mean. Say the sample mean turns out 
to be 8 percent. This info is useful, but it’s difficult to judge how much the 
stock’s returns may fluctuate from one year to the next based on this result.

Instead, suppose that the portfolio manager can estimate, with 95 percent 
certainty, that the return on the stock is between 6 and 10 percent, showing 
the stock’s returns are relatively stable over time — the stock isn’t extremely 
risky. The estimated range from 6 to 10 percent is an interval estimate.

In general, you compute an interval estimate with this formula:

point estimate ± margin of error

This can be written as:

(point estimate – margin of error, point estimate + margin of error)

 The symbol ± indicates that two values exist: point estimate – margin of error, 
and point estimate + margin of error.
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The margin of error depends on several factors, such as the type of point 
estimate being used, the size of the sample being used to construct the point 
estimate, and so forth. The margin of error is a measure of the degree of 
uncertainty associated with the point estimate.

Calculate an interval estimate of the population mean (μ) with this formula:

The margin of error is a measure of how much uncertainty is associated with 
the value of . Its value is closely related to the standard deviation of the 
underlying population and the size of the sample used to estimate .

Estimating confidence intervals  
for the population mean
A confidence interval is a specific type of interval estimate characterized by:

 ✓ A confidence coefficient, expressed as (1 – α)

  α is known as the level of significance. For example, if you choose the 
level of significance to be 0.05, then the corresponding confidence coef-
ficient equals (1 – α) = (1 – 0.05) = 0.95.

 ✓ A confidence level, expressed as 100(1 – α)

  For example, if the confidence coefficient equals 0.95, then the corre-
sponding confidence level equals 100(0.95) = 0.95 = 95 percent.

Suppose that a 95 percent confidence interval is constructed for the popula-
tion mean age in the United States based on the ages of people randomly 
chosen throughout the country. If this process is repeated 100 times (for 
example, 100 samples are drawn and a new confidence interval is estimated 
in each case), then you would expect that the true population mean age is 
contained in 95 of these 100 confidence intervals.

Two possible situations may arise when constructing a confidence interval for 
the population mean: A known population standard deviation and an unknown 
population standard deviation that you must estimate with the sample stan-
dard deviation(s). I discuss these situations in the following sections.

Known population standard deviation
If you know the population standard deviation, then the confidence interval 
is based on the standard normal distribution (which I discuss in detail in 
Chapter 9). Here’s the formula for constructing this confidence interval:
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where:

 is the sample mean.

σ is the population standard deviation.

n is the sample size.

α is the level of significance.

Zα/2 is a quantile or critical value, which represents the location of the 
right tail of the standard normal distribution with an area of α/2.

 is the margin of error.

The confidence interval can also be written as:

The two values contained in this interval are known as:

 ✓ The lower limit of the confidence interval: 

 ✓ The upper limit of the confidence interval: 

For example, suppose you want to construct a 95 percent confidence inter-
val. This implies that α = 0.05 (or 5 percent) so that α/2 = 0.025 or 2.5 percent.

You can find the value of Zα/2 from a standard normal probability table, such 
as shown in Table 11-2. The standard normal table shows probabilities below 
of a specific value. Because the area above Zα/2 = 0.025, the area below Zα/2 = 
1 – 0.025 = 0.975 (due to the symmetry of the standard normal distribution).

By searching in the body of the standard normal table for the area 0.9750, 
you get the appropriate value of Zα/2. See Table 11-2 for this result.

Table 11-2 The Standard Normal Table
Z 0.05 0.06 0.07
1.7 0.9599 0.9608 0.9616
1.8 0.9678 0.9686 0.9693
1.9 0.9744 0.9750 0.9756
2.0 0.9798 0.9803 0.9812
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Table 11-2 shows that the appropriate value of Zα/2 is 1.96. (You find the value 
1.9 in the first [Z] column and the value 0.06 in the third [0.06] column.)

 You construct many confidence intervals using a 90 percent confidence level, 
a 95 percent confidence level, or a 99 percent confidence level. In these three 
cases, the value of Zα/2 is as follows:

Confidence Level Zα/2
90 percent 1.645
95 percent 1.960
99 percent 2.576

These results indicate that for a standard normal random variable Z, the fol-
lowing expressions are true:

P(Z ≤ 1.645) = 0.9500

P(Z ≥ 1.645) = 0.0500

P(Z ≤ 1.960) = 0.9750

P(Z ≥ 1.960) = 0.0250

P(Z ≤ 2.576) = 0.9950

P(Z ≥ 2.576) = 0.0050

The resulting confidence interval may then be expressed as follows:

This expression shows that the population mean is contained within this 
interval with a level of confidence equal to 100(1 – α).

For example, suppose that a hedge fund holds a portfolio consisting of 500 
stocks. The standard deviation is 20 percent. If you choose a sample of 10 
stocks and determine the sample mean to be 8 percent, you construct a 90 
percent confidence interval by following these steps:

 1. Figure α/2.

  100(1 – α) = 90 percent

  α = 0.10

  α/2 = 0.05

 2. Use the standard normal table (Table 11-2) to find the critical value: 
Zα/2 = 1.645.
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 3. Compute the confidence interval.

  sample size: n = 10

  population standard deviation: σ = 0.20

  sample mean: 

  Therefore, the appropriate confidence interval is

For a 95 percent confidence interval, the only change you need to make is to 
the critical value, which you determine as follows:

100(1 – α) = 95 percent

α = 0.05

α/2 = 0.025

Zα/2 = Z0.025 = 1.96

The 95 percent confidence interval is

Finally, you determine a 99 percent confidence interval with these adjustments:

100(1 – α) = 99 percent

α = 0.01

α/2 = 0.005

Zα/2 = Z0.025 = 2.576

The 99 percent confidence interval is
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 As the level of confidence increases so does the width of the confidence inter-
val because the only way to have more confidence that the interval actually 
contains the population mean is to include more values.

Unknown population standard deviation
If the population standard deviation is not known, then you compute an inter-
val estimate for the population mean as follows:

where:

 is a quantile (critical value) which represents the location of the right 
tail of the t-distribution with n – 1 degrees of freedom with an area of α/2

s is the sample standard deviation

In this case, you make the following changes to the formula:

 ✓ You use the sample standard deviation (s) rather than the population 
standard deviation.

 ✓ You use the t-distribution rather than the standard normal distribution 
because of the greater uncertainty associated with the sample standard 
deviation.  is a quantile or critical value taken from the t-distribution 
and represents the location of the right tail of the t-distribution with  
n – 1 degrees of freedom whose area equals α/2. 

As an example, suppose that α = 0.05 so that α/2 = 0.025. Also assume that 
the appropriate number of degrees of freedom is 9. You can get the value of 

 from a t-table, as in Table 11-1.

The appropriate column heading is t0.025; with nine degrees of freedom, the 
value of  is 2.262.

For example, a university has 10,000 students and wants to estimate the aver-
age GPA of the entire student body. It picks a sample of ten students, and the 
sample mean GPA is 3.10. The sample standard deviation is 0.25. You con-
struct confidence intervals for the population mean as follows:

 ✓ For a 90 percent confidence interval, the value of α/2 is 0.05:

  100(1 – α) = 90 percent

  α = 0.10

  α/2 = 0.05

  With n – 1 = 9 degrees of freedom, based on the t-table (Table 11-1), 
.
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  The sample size is n = 10, the population standard deviation is s = 0.25, 
and the sample mean is . Therefore, the appropriate confidence 
interval is

  

 ✓ For a 95 percent confidence interval, you follow similar calculations but 
change the critical value:

  100(1 – α) = 95 percent

  α = 0.05

  α/2 = 0.025

  With n – 1 = 9 degrees of freedom, based on the t-table (Table 11-1), 
. Therefore, the appropriate confidence interval is

  

 ✓ For a 99 percent confidence interval, you again change the critical value to

  100(1 – α) = 99 percent

  α = 0.01

  α /2 = 0.005

  With n – 1 = 9 degrees of freedom, based on the t-table (Table 11-1), 
. Therefore, the appropriate confidence interval is

  

In each case, the confidence interval is wider than it would be when using the 
standard normal distribution.



Chapter 12

Testing Hypotheses about the 
Population Mean

In This Chapter
▶ Understanding the hypothesis testing process
▶ Testing hypotheses about two population means

H 
ypothesis testing is a multi-step statistical process which is used to test 
claims about a population measure, such as the mean. For example, 

you can use hypothesis testing on the following statements to determine 
whether they’re true:

 ✓ Mean income in the United States has risen over the past 25 years.

 ✓ The average age of the population of Egypt is above 30.

 ✓ The average return to the stocks in a portfolio is 10 percent.

 ✓ The United States and Canada have average work weeks identical in 
length.

 ✓ The average lifetime of brandy drinkers is 90.

You test hypotheses with a series of steps designed to show whether you can 
justify a claim. These steps apply to a lot of situations; for example, you can 
test claims about a population’s mean, a population’s variance, whether a 
population is normally distributed, and so forth.

This chapter focuses on testing hypotheses about the mean value of a single 
population and the equality of the means of two different populations.
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Applying the Key Steps in Hypothesis 
Testing for a Single Population Mean

Hypothesis testing requires sample data to draw conclusions about the char-
acteristics of the underlying population. The necessary steps for any type of 
hypothesis test are outlined in the following sections.

Writing the null hypothesis
The null hypothesis is a statement that’s assumed to be true unless strong 
contrary evidence exists. The null hypothesis can take several forms. You 
can use it to test statements about population measures, such as means and 
standard deviations, and to test statements about the relationship between 
two populations. An example of a null hypothesis is the mean IQ of Star Trek 
fans is higher than the mean IQ of Star Wars fans.

You write the null hypothesis for testing the value of a single population 
mean as

H0: μ = μ0

where H0 stands for the null hypotheses, μ is the true population mean 
(whose value we do not know,) and μ0 is the hypothesized value of the popu-
lation, or the value that you think is true.

For example, if you want to test the hypothesis that the mean number of runs 
scored per game in the American League is 4; you write the null hypothesis 
as H0: μ = 4.0.

If actual data shows that this is false, you reject the null hypothesis; other-
wise, you don’t reject the null hypothesis. (You never accept the null hypoth-
esis; instead, you fail to reject it if there is not enough evidence against it.)

Coming up with an alternative hypothesis
Suppose that the null hypothesis is false. For example, you are testing 
the null hypothesis that the mean number of runs scored per game in the 
American League is 4. If data taken from actual games shows that this is false, 
it must be true that:
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The number of runs scored is more than 4

The number of runs scored is less than 4

Prior to testing the null hypothesis, you must specify what alternative you 
accept if the null hypothesis is false. It turns out that there are actually three 
ways to express the alternative hypothesis:

The number of runs scored is more than 4

The number of runs scored is less than 4

The number of runs is different from 4

The alternative that you choose depends on what type of action is taken as 
a result of the hypothesis test. For example, suppose that the commissioner 
decides that if the number of runs scored is less than 4, the league encourages 
teams to shorten the distance to their outfield fences (which encourages more 
home runs.) You therefore use “the number of runs scored is less than 4” as 
your alternative hypothesis. This ensures that no action is taken unless it’s 
extremely clear that the number of runs is less than 4.

There are special names associated with the three types of alternative 
hypotheses:

 ✓ Right-tailed test

 ✓ Left-tailed test

 ✓ Two-tailed test

A right-tailed test indicates that the actual population mean is greater than 
the hypothesized mean. A left-tailed test indicates that the actual population 
mean is less than the hypothesized population mean. A two-tailed test is a 
combination of the right-tailed and left-tailed tests; it indicates that the actual 
population mean is different than the hypothesized mean. (This combines 
the two alternative hypotheses that the actual population mean is greater 
than the hypothesized mean and the actual population mean is less than the 
hypothesized mean.)

Right-tailed test
A right-tailed test is a test to determine if the actual value of the population 
mean is greater than the hypothesized value. 

Suppose you’re testing a hypothesis about the mean of a population, and 
you’re interested in only strong evidence that the mean is greater than a spec-
ified value. In this case, you set up a right-tailed test. (“Right tail” refers to the 
largest values in a probability distribution.)
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As an example of a right-tailed test, suppose that a department store wants to 
know whether the mean length of time its merchandise remains in inventory 
is 30 days. If the mean time is greater than 30 days, the store will overhaul its 
ordering procedures; if the mean is equal to or less than 30 days, the store 
will do nothing.

In this case, it’s extremely important for the store to know whether the mean 
exceeds 30 days because a key decision depends on this information. The 
store doesn’t want to spend time overhauling its procedures unless strong 
evidence shows that it’s necessary; therefore, the most appropriate choice is 
a right-tailed test that shows the mean is greater than 30 days.

In general, you write the alternative hypothesis with a right-tailed test as 

H1: μ > μ0

Here, H1 represents the alternative hypothesis. In this example, you’d write 
the alternative hypothesis as H1: μ > 30.

Left-tailed test
A left-tailed test is a test to determine if the actual value of the population 
mean is less than the hypothesized value. (“Left tail” refers to the smallest 
values in a probability distribution.)

Suppose that you’re testing a hypothesis about the mean of a population, and 
you’re interested only in strong evidence that the mean is less than a speci-
fied value. In this case, you set up a left-tailed test.

For example, a pension fund wants to know whether any of its portfolio 
managers are earning an average return that falls short of the return to 
the Standard & Poor’s 500 (S&P) stock index. (Assume this return is cur-
rently 8 percent.) If so, these managers won’t receive the company’s annual 
Christmas bonus.

 The S&P is an index that represents the values of the 500 largest publicly 
traded U.S. stocks; it’s often used as a benchmark for comparing the returns of 
portfolio managers.

In this situation, the fund is interested in knowing only which managers don’t 
qualify for the Christmas bonus. As a result, the most appropriate choice for 
the alternative hypothesis a left-tailed test that shows the mean return is less 
than 8 percent.

In general, you write the alternative hypothesis for a left-tailed test as:

H1: μ < μ0

In this example, you’d write the alternative hypothesis as H1: μ < 0.08.



205 Chapter 12: Testing Hypotheses about the Population Mean

Two-tailed test
Building on the right-tailed test and the left-tailed test, consider the two-tailed 
test, which is used to determine if the actual value of the population mean is 
different than the hypothesized value; for example, greater than or less than. (A 
two-tailed test uses both the right tail and left tail of a probability distribution.)

Suppose you’re testing a hypothesis about the mean of a population, and you 
need to know whether the mean is different from a specified value.

For example, a bottling company wants to be sure that the mean volume of 
its 1-liter bottles is actually 1 liter. Any value less than or more than this mea-
surement could lead to significant problems. So the most appropriate choice 
is a two-tailed test that shows the mean volume is not equal to 1.

In general, you express the alternative hypothesis for a two-tailed test as

H1: μ ≠ μ0

In this example, you’d write the alternative hypothesis as H1: μ ≠ 1. This 
expression indicates that if the null hypothesis is false then either H1: μ > 1 or 
H1: μ < 1 will be accepted in its place, depending on the value of the test sta-
tistic relative to the critical values.

In this case, a two-tailed test was conducted due to the extreme importance 
of determining immediately if the mean content of the bottles is either less 
than 1 or greater than 1. If overfilled bottles are a problem, but not under-
filled bottles, you would use a right-tailed test. If underfilled bottles are a 
problem, but not overfilled bottles, you would use a left-tailed test.

Choosing a level of significance
To test a hypothesis, you must specify a level of significance — the probabil-
ity of rejecting the null hypothesis when it’s actually true. 

 Rejecting the null hypothesis when it is actually true is is known as a Type I 
error. By contrast, a Type II error occurs when you fail to reject the null 
hypothesis when it’s actually false. The level of significance of a hypothesis 
test equals the probability of committing a Type I error. A Type I error is 
sometimes known as a “false positive”; a Type II error is sometimes known as 
a “false negative.”

In the process of testing a hypothesis, the following four results can take 
place. The two possible correct decisions are:

 ✓ Rejecting the null hypothesis when it’s false

 ✓ Failing to reject the null hypothesis when it’s true
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The two possible incorrect decisions are:

 ✓ Rejecting the null hypothesis when it’s true

 ✓ Failing to reject the null hypothesis when it’s false

The probability of committing a Type I error is often designated with the 
letter α (“alpha”), and the probability of committing a Type II error is often 
designated with the letter β (“beta”). 

The larger is the probability of a Type I error that you choose for a hypoth-
esis test, the smaller will be the probability of a Type II error, and vice versa. 
(One way to reduce both is to increase the sample size used for the hypoth-
esis test.)

 Note: The probabilities of Type I and Type II errors do not add up to 1; they 
are not complementary events. (Complementary events are discussed in 
Chapter 6.)

When you’re conducting a hypothesis test, you choose the value of α to find 
the right balance between avoiding Type I and Type II errors. In some types 
of applications, avoiding Type I errors is critically important; in other cases, 
Type I errors may not be as serious.

In many hypothesis tests of a population value (such as the mean), the level 
of significance is often 0.01, 0.05, or 0.10, with 0.05 being most common.

Although both Type I and Type II errors represent serious mistakes, in some 
situations, one mistake is far more important to avoid than the other. For 
example, in a jury trial, the null hypothesis is “the defendant is innocent,” 
which is assumed to be true unless strong contrary evidence suggests other-
wise. The alternative hypothesis is that “the defendant is guilty.”

In this situation, four outcomes can occur:

 ✓ The jury reaches a correct decision by acquitting an innocent defendant.

 ✓ The jury reaches a correct decision by convicting a guilty defendant.

 ✓ The jury commits a Type I error by wrongly convicting an innocent 
defendant. (In this situation, the null hypothesis of innocence has been 
incorrectly rejected.)

 ✓ The jury commits a Type II error by acquitting a guilty defendant 
(because the null hypothesis of innocence hasn’t been rejected when it’s 
actually false).

For a jury trial, avoiding a Type I error is far more important than avoiding 
a Type II error; as such, you set α equal to a very small value, which would 
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imply a much larger value for β. (α would never be set equal to 0 because 
that would ensure that no one is ever convicted!)

Because a Type I error in this case indicates that an innocent person has been 
convicted, and a Type II error indicates that a guilty person walks free, it’s 
clearly imperative to avoid Type I errors even if it means more Type II errors.

 Sir William Blackstone (1723–1780), the famous English judge and politician, 
once wrote that “It is better that ten guilty persons escape than that one inno-
cent suffer.” A statistician might rephrase this in slightly less elegant terms: “It 
is extremely important to avoid Type I errors in a jury trial.”

Computing the test statistic
A test statistic is a numerical measure you construct to determine whether 
you should reject the null hypothesis. It shows how far the sample mean is 
from the hypothesized value of the population mean in terms of standard 
deviations. You calculate this value from a sample drawn from the underlying 
population.

For example, say you’re testing a hypothesis about the mean age of the resi-
dents in a city. The city government wants to know whether the mean age is 
40. You choose a sample of city residents, and you compute the mean age of 
the sample members. If the sample mean age is substantially different from 
40, the null hypothesis will likely be rejected.

If you conduct a hypothesis test of the value of a single population mean, the 
form of the test statistic depends on two key details: the size of the sample 
chosen from the population and whether the population standard deviation 
is known.

 When you’re testing hypotheses about the population mean, the cutoff point 
between a small sample and a large sample is 30. Any sample size less than 30 
is small; a sample size of 30 or more is large.

When you’re conducting hypothesis tests of the mean with a small sample, 
the test statistic follows the Student’s t-distribution. With a large sample, the 
test statistic follows the standard normal distribution. (See Chapters 9 and 11 
for discussions on the normal distribution and Student’s t-distribution.)

For a small sample (less than 30), the test statistic is
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In this formula,

 ✓ t indicates that this test statistic follows the Student’s t-distribution

 ✓  is the sample mean

 ✓ s is the sample standard deviation

 ✓ n is the sample size

 ✓  is the standard error of the sample mean

For a large sample (30 or more), two possibilities exist:

 ✓ In the unlikely case that you don’t know the population mean but do know 
the population standard deviation (σ), the appropriate test statistic is

  

 ✓ If the population standard deviation is unknown, the appropriate test 
statistic is

  

The letter Z indicates that these test statistics follow the standard normal dis-
tribution. The standard normal distribution (see Chapter 9) is the special case 
of the normal distribution with mean (μ) of 0 and a standard deviation (σ) of 1.

Comparing the critical value(s)
After you calculate a test statistic, you compare it to one or two critical 
values, depending on the alternative hypothesis, to determine whether you 
should reject the null hypothesis.

A critical value shows the number of standard deviations away from the 
mean of a distribution where a specified percentage of the distribution is 
above the critical value and the remainder of the distribution is below the 
critical value.

For example, based on the standard normal table (see Chapter 9), the prob-
ability that a standard normal random variable Z is less than 1.645 equals 
0.95 or 95 percent. As a result, the probability that Z is greater than 1.645 is 
0.05 or 5 percent. 1.645 is the critical value that divides the lower 95 percent 
of the distribution from the upper 5 percent of the distribution. Due to the 
symmetry of the standard normal distribution, –1.645 is the critical value that 
divides the lower 5 percent of the distribution from the upper 95 percent of 
the distribution.
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This is shown in Figure 12-1. The shaded region is the upper 5 percent of the 
standard normal distribution, and the unshaded region is the lower 95 per-
cent of the distribution.

 

Figure 12-1: 
Critical 

value taken 
from the 
standard 

normal  
distribution.

 

The appropriate critical value depends on whether you are conducting a 
right-tailed test, a left-tailed test, or a two-tailed test, as follows:

 ✓ A right-tailed test has one positive critical value.

 ✓ A left-tailed test has one negative critical value.

 ✓ A two-tailed test has two critical values, one positive and one negative.

The appropriate critical value also depends on the sample size and whether 
or not the population standard deviation is known. In the following sections, 
I show you how to determine the critical values for a hypothesis test for the 
value of the population mean, for both small and large samples.

Small sample (n < 30)
As I mention earlier, a small sample is less than 30. When you use a small 
sample to test a hypothesis about the population mean, you take the result-
ing critical value or values from the Student’s t-distribution, as follows:

 ✓ Right-tailed test: critical value = 

 ✓ Left-tailed test: critical value = 

 ✓ Two-tailed test: critical value = 

Note: α is the level of significance, and n represents the sample size.
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 You draw these critical values from the Student’s t-distribution with n – 1 
degrees of freedom (df). (See the Student’s t-table in Chapter 11.)

 The number of degrees of freedom refers to the number of independent ele-
ments in a sample. When testing hypotheses about a single population mean, 
the degrees of freedom equals the sample size (n) minus 1. This is because the 
sample data is used to estimate one value: the sample mean. For any given set 
of n – 1 sample elements and the sample mean, the remaining sample element 
is a known value. For example, if a sample contains the elements 1, 2, 3 and 4, 
the sample mean equals (1 + 2 + 3 + 4) /4 = 2.5. If the sample elements 1, 2, 3 
are chosen, the sample mean of 2.5 implies that the missing element is 4. (In 
other words, the sample mean of 2.5 indicates that the sum of the sample ele-
ments is 10. Because the sample elements 1, 2, and 3 sum to 6, the remaining 
element must be 4.) Therefore, one sample element is uniquely determined, 
while the remaining n – 1 sample elements are completely variable. As a result, 
the degrees of freedom equal n – 1.

The number of degrees of freedom used with the t-distribution depends 
on the particular application. For testing hypotheses about the popula-
tion mean, the appropriate number of degrees of freedom is one less than 
the sample size (that is, n – 1). (See Chapter 11 for details on the Student’s 
 t-distribution.)

The critical value or values are used to locate the areas under the curve of a 
distribution that are too extreme to be consistent with the null hypothesis. 
For a right-tailed test, these are the large positive values, which are collec-
tively known as the right tail of the distribution. For a left-tailed test, these 
are the large negative values, which are collectively known as the left tail of 
the distribution. In either case, the area in the tail equals the level of signifi-
cance of the hypothesis test. For a two-tailed test, the value of the level of sig-
nificance (α) is split in half; the area in the right tail equals α/2, and the area 
in left tail equals α/2, for a total of α.

Right-tailed test with a small sample
As an example of a right-tailed test, suppose the level of significance is 0.05 
and the sample size is 10; then you get a single positive critical value:

Refer to Table 12-1 to find the intersection of the row representing 9 degrees 
of freedom and the column headed t0.05. 
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Table 12-1 The Student’s t-distribution
Degrees of 
Freedom (df)

t0.10 t0.05 t0.025 t0.01 t0.005

6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947

The critical value is 1.833, or , as shown in Figure 12-2.

The shaded region in the right tail represents the rejection region; if the test 
statistic falls in this area, the null hypothesis will be rejected.

Left-tailed test with a small sample
As an example of a left-tailed test, suppose the level of significance is 0.05 and 
the sample size is 10; then you get a single negative critical value:

 

Figure 12-2: 
Critical 

value taken 
from the  

t-distribution: 
right-tailed 

test.
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You get this number from the t-table (Table 12-1) at the intersection of the 
row representing 9 degrees of freedom and the t0.05 column; the critical value 
is –1.833, or , as shown in Figure 12-3.

 

Figure 12-3: 
Critical 

value taken 
from the  

t-distribution: 
left-tailed 

test.
 

The shaded region in the left tail represents the rejection region; if the test 
statistic falls in this area, the null hypothesis will be rejected.

Two-tailed test with a small sample
As an example of a two-tailed test, suppose the level of significance is 0.05 and 
the sample size is 10; then you get a positive and a negative critical value:

You can find the value of the positive critical value  directly from 
Table 12-1.

In this case, you find the positive critical value t9
0.025 at the intersection of 

the row representing 9 degrees in the Degrees of Freedom (df) column and 
the t0.025 column. The positive critical value is 2.262; therefore, the negative 
critical value is –2.262. You represent these two values like so (as Figure 12-4 
illustrates):

The shaded region in the two tails represents the rejection region; if the test 
statistic falls in either tail, the null hypothesis will be rejected.
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Figure 12-4: 
Critical 

value taken 
from the  

t-distribution: 
two-tailed 

test.
 

Large sample (n ≥ 30)
A large sample has a size greater than or equal to 30. When you use a large 
sample to test a hypothesis about the population mean, you take the result-
ing critical value or values from the standard normal distribution, as follows:

 ✓ Right-tailed test: critical value = Zα

 ✓ Left-tailed test: critical value = –Zα

 ✓ Two-tailed test: critical values = ±Zα/2

Because you draw these critical values from the standard normal distribu-
tion, you don’t have to calculate degrees of freedom. Unlike the Student’s 
t-distribution, the standard normal distribution isn’t based on degrees of 
freedom. I walk you through how to find these critical values in the following 
sections.

 For hypothesis testing applications, the critical values listed in Table 12-2 are 
used frequently; you may want to memorize them.

Table 12-2 Common Critical Values of the  
 Standard Normal Distribution
α Right-Tailed Test Left-Tailed Test Two-Tailed Test
0.01 2.328 –2.328 ±2.576
0.05 1.645 –1.645 ±1.960
0.10 1.282 –1.282 ±1.645
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Right-tailed test with a large sample
A right-tailed hypothesis test of the population mean with a level of signifi-
cance of 0.05 has a single positive critical value: Zα = Z0.05. You find the value 
by checking the body of Table 12-3 for a probability of 1 – α, which is 0.9500.

Table 12-3 Standard Normal Table — Positive Values
Z 0.04 0.05 0.06 0.07
1.5 0.9382 0.9394 0.9406 0.9418
1.6 0.9495 0.9505 0.9515 0.9525
1.7 0.9591 0.9599 0.9608 0.9616
1.8 0.9671 0.9678 0.9686 0.9693
1.9 0.9738 0.9744 0.9750 0.9756
2.0 0.9793 0.9798 0.9803 0.9808

Unfortunately, this exact value isn’t in the table. The two closest values are 
0.9495 and 0.9505, which you can find at the intersections of row 1.6 under 
the Z column and the 0.04 and 0.05 columns.. The critical value is, therefore, 
halfway between 1.64 and 1.65; average it out to get 1.645, or , and 
see Figure 12-5 for a graphical depiction.

A left-tailed hypothesis test with a level of significance of 0.05 has a single 
negative critical value –Zα = –Z0.05, or simply –1.645: . Figure 12-6 
represents this critical value graphically.

 

Figure 12-5: 
Critical 

value taken 
from the 

standard 
normal 

distribution: 
right-tailed 

test.
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Figure 12-6: 
Critical 

value taken 
from the 
standard 

normal 
distribution: 

left-tailed 
test.

 

Two-tailed test with a large sample
For a two-tailed hypothesis test of the population mean with a level of signifi-
cance of 0.05, the two critical values are .

You can find the positive critical value in a standard normal table, like 
Table 12-3.

 Finding critical values in a standard normal table is more complicated than 
finding critical values in a t-table. The body of the standard normal table con-
tains probabilities, unlike in the t-table where the probabilities are contained 
in the column headings.

In this example, you find the positive critical value Zα/2 = Z0.025 by checking the 
body of the table for a probability of

.

In other words, the positive critical value represents the number of standard 
deviations above the mean at which

 ✓ 2.5 percent of the area under the standard normal curve is to the right of 
this point.

 ✓ 97.5 percent of the area under the standard normal curve is to the left of 
this point.

Because the standard normal table shows areas to the left of specified values, 
you can find the positive critical value by locating the probability 0.9750, 
not 0.0250, in the body of the table (Table 12-3). You find this probability by 
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following the row 1.9 under the Z column to the 0.06 column. Therefore, the 
critical value Zα/2 = Z0.025 = 1.96. The corresponding negative critical value is 
–1.96. You can write these critical values as . Figure 12-7 shows 
these values graphically.

 

Figure 12-7: 
Critical val-

ues taken 
from the 
standard 

normal 
distribution: 

two-tailed 
test.

 

Using the decision rule
You make the decision to reject the null hypothesis by looking at the relation-
ship between the test statistic and the critical value(s), as follows:

 ✓ Right-tailed test: If the test statistic is greater than the critical value, 
reject the null hypothesis H0: μ = μ0 in favor of the alternative hypothesis 
H1: μ > μ0; otherwise, don’t reject the null hypothesis. There is insuffi-
cient evidence to show that the null hypothesis is false.

 ✓ Left-tailed test: If the test statistic is less than the critical value, reject 
the null hypothesis H0: μ = μ0 in favor of the alternative hypothesis H1: μ 
< μ0; otherwise, don’t reject the null hypothesis. There is insufficient evi-
dence to show that the null hypothesis is false.

 ✓ Two-tailed test; If the test statistic is less than the negative critical value, 
reject the null hypothesis H0: μ = μ0 in favor of the alternative hypothesis 
H1: μ < μ0. If the test statistic is greater than the positive critical value, 
reject the null hypothesis H0: μ = μ0 in favor of the alternative hypothesis 
H1: μ > μ0. Otherwise, don’t reject the null hypothesis. There is insuffi-
cient evidence to show that the null hypothesis is false.
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As an example, suppose that the government of a small country is interested 
in studying the characteristics of household incomes in the country. The 
government wants to know whether the mean household income is greater 
than $25,000 per year. If so, the government will propose new types of taxes; 
otherwise, no new taxes will occur. The appropriate steps for testing the null 
hypothesis that the mean household income equals $25,000 at the 5 percent 
level of significance are given as follows:.

The null and alternative hypotheses are

H0: μ = 25,000

H1: μ > 25,000

In this example, the government uses a right-tailed test because it’s look-
ing for strong evidence that the mean household incomes are greater than 
$25,000 per year. If true, the government will take an important action.

Assume that the level of significance is 0.05. The government’s chief statis-
tician selects a sample of 100 households and computes the sample mean 
household income to be $27,200 per year. The population standard deviation 
is unknown; instead, the government statistician computes the sample stan-
dard deviation, and it turns out to be $8,400.

Because the government statistician chose a large sample (greater than or 
equal to 30), he uses the standard normal distribution to test this hypothesis. 
Because the population standard deviation is unknown, the appropriate test 
statistic is

The value of the test statistic is, therefore,

The critical value is Zα = Z0.05 = 1.645 (see Table 12-3).

Because the test statistic of 2.62 exceeds the critical value of 1.645, the gov-
ernment statistician rejects the null hypothesis in favor of the alternative 
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hypothesis that the population mean exceeds $25,000. As a result, there are 
new taxes. Figure 12-8 shows this result graphically.

As another example, say the same government wants to study the average 
crop yields of its wheat farmers. The government wants to know whether the 
mean yield is equal to 10,000 bushels per year.

If the mean yield is below 10,000, the government will provide cash assis-
tance to the farmers. If the mean yield is above 10,000, the government will 
export some of the surplus wheat to foreign countries. The government’s 
chief statistician can test the null hypothesis that the mean crop yield equals 
10,000 bushels. (Assume that he chooses a 5 percent level of significance.)

The null and alternative hypotheses are

H0: μ = 10,000

H1: μ ≠ 10,000

 

Figure 12-8: 
Standard 

normal 
distribution: 

The null 
hypothesis 
is rejected.

 

This example requires a two-tailed test, because the government is looking 
for strong evidence that mean crop yields are either less than or greater than 
10,000 bushels per year. The government will undertake an important action 
in either case.

Assume that the level of significance is 0.05. The government statistician 
selects a sample of eight farms, and estimates the sample mean and standard 
deviation. The mean crop yield turns out to be 9,400 bushels. The sample 
standard deviation is 420 bushels.
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Due to the small number of farms in the country, the government statistician 
chose a small sample (less than 30); therefore, the hypothesis test is based 
on the Student’s t-distribution. The appropriate test statistic is, therefore,

If the population standard deviation (σ) is known, you use the standard normal 
distribution, regardless of the sample size. (See Chapter 11 for details.)

The value of the test statistic is

The critical values are .

With a sample size of n = 8, the appropriate number of degrees of freedom 
is n – 1 = 7. With a level of significance of 0.05, the value of α/2 is 0.025. 
Therefore, you find the critical values in the t-table (Table 12-1) as follows:

With a two-tailed test, the decision rule is to

 ✓ Reject the null hypothesis H0: μ = μ0 in favor of the alternative hypoth-
esis H1: μ < μ0 if the test statistic is less than the negative critical value 
(–2.365).

 ✓ Reject the null hypothesis H0: μ = μ0 in favor of the alternative hypothe-
sis H1: μ > μ0 if the test statistic is greater than the positive critical value 
(2.365).

 ✓ Not reject the null hypothesis if the test statistic is between the negative 
and positive critical values (–2.365 and 2.365).

Because the test statistic is 1.35, it’s greater than the negative critical value 
of –2.365, and less than the positive critical value of 2.365. In other words, the 
test statistic is not in the rejection region, as shown in Figure 12-9.
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Figure 12-9: 
Student’s  

t-distribution: 
The null 
hypoth-

esis is not 
rejected.

 

In this example, you do not reject the null hypothesis H0: μ = μ0. As a result, 
the government takes no action.

Testing Hypotheses About  
Two Population Means

In addition to testing claims about the mean of a population, hypothesis test-
ing can be used to compare the equality of two different population means. 
For example, you can use hypothesis testing on the following statements to 
determine whether they’re true:

 ✓ The mean price of gasoline per gallon is equal in New York and New 
Jersey.

 ✓ The average life expectancy of men is the same in the United States and 
Canada.

 ✓ The mean annual rainfall is equal in Washington and Oregon.

 ✓ The length of the average flight delay is the same at Kennedy Airport 
and LaGuardia Airport.

The basic procedure for testing hypotheses about two population means is 
similar to the procedure for a single population mean (which I discuss in the 
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section “Applying the Key Steps in Hypothesis Testing for a Single Population 
Mean”). The most important differences are the form of the test statistics you 
use for two population means and the calculation of the critical values. I out-
line the differences in the following sections.

Writing the null hypothesis  
for two population means
To test the equality of two population means, you write the null hypothesis as

H0: μ1 = μ2

In this formula, H0 is the null hypothesis, μ1 is the mean of population 1, and 
μ2 is the mean of population 2.

Note that when testing hypotheses about two population means, one popula-
tion is arbitrarily chosen to be “population 1” and the other becomes “popu-
lation 2.”

Defining the alternative hypotheses 
for two population means
Just as you have an alternative hypothesis for testing a single population 
mean, when you test two population means, you also need an alternative 
hypothesis. If the null hypothesis is rejected, you must specify what other 
result will be accepted instead. This is the role of the alternative hypothesis.

The alternative hypothesis can take one of three forms:

 ✓ Right-tailed test: H1: μ1 > μ2

 ✓ Left-tailed test: H1: μ1 < μ2

 ✓ Two-tailed test: H1: μ1 ≠ μ2

A right-tailed test is used to indicate if the mean of population 1 is greater than 
the mean of population 2. Similarly, a left-tailed test is used to show if the 
mean if population 1 is less than the mean of population 2. A two-tailed test 
is used to show if the mean of population 1 is different than the mean of popu-
lation 2.
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Determining the test statistics  
for two population means
When you’re testing hypotheses about two population means, you can 
choose from several test statistics. The choice depends on:

 ✓ whether the samples drawn from the two populations are independent 
of each other

 ✓ whether the variances of the two populations are equal

 ✓ whether the samples chosen from the two populations are large (at 
least 30) or small (less than 30)

Samples are independent if they’re not related to each other. For example, 
samples of GPAs at two universities are independent samples, because none 
of the students in these samples attend both universities.

If you choose independent samples from two populations, you choose the 
test statistic and critical values based on the following questions:

 ✓ Are the variances of the two populations equal?

 ✓ If the variances are unequal, are the sample sizes large (at least 30)?

If the samples are dependent, the choice for test statistics and critical values 
are different. For example, suppose that medical researchers are conducting 
a study to determine whether a new cholesterol drug is effective in reduc-
ing LDL (bad cholesterol) in patients. If you chose a sample of LDL readings 
chosen from a set of patients prior to taking the drug and a sample of LDL 
readings among the same patients after taking the drug, these two samples 
would be closely related and, therefore, dependent. This type of hypothesis 
test requires a different procedure for constructing the test statistic and criti-
cal values than for independent samples. I explore using independent and 
dependent, or paired, samples in the following sections.

Using independent samples
When using independent samples, you first have to decide whether the popu-
lations being tested have equal variances (or if you have reason to believe 
that they’re equal).

With equal population variances, the test statistic requires the calculation 
of a pooled variance — this is the variance that the two populations have in 
common. You use the Student’s t-distribution to find the test statistic and 
critical values.
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With unequal population variances, there are two possibilities. 

 ✓ You use the standard normal distribution for the test statistic and criti-
cal values if the samples are large (at least 30).

 ✓ You use the t-distribution if at least one of the samples is small (less 
than 30).

The choice of distribution for the hypothesis test based on independent 
samples is summarized in Table 12-4: 

Table 12-4 Choice of Probability Distribution  
 for Independent Samples
Condition Distribution
Equal variances Student’s t
Unequal variances: large samples Standard Normal (Z)
Unequal variances: at least one small sample Student’s t

Equal population variances
If the variances of two populations are equal (or are assumed to be equal) 
the appropriate test statistic is based on the Student’s t-distribution:

Here’s what each term means:

 ✓  is the mean of the sample chosen from population 1.

 ✓  is the mean of the sample chosen from population 2.

 ✓ μ1 is the mean of population 1.

 ✓ μ2 is the mean of population 2.

 ✓ (μ1 – μ2)0 is the hypothesized difference between populations 1 and 2, 
which is 0 when the population means are hypothesized to be equal.

 ✓ n1 is the size of the sample chosen from population 1.

 ✓ n2 is the size of the sample chosen from population 2.

 ✓ s2
1 is the variance of the sample chosen from population 1.
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 ✓ s2
2 is the variance of the sample chosen from population 2.

 ✓ s2
p is the estimated common pooled variance of the two populations, or 

in mathematical terms:

If you are conducting a hypothesis test of two population means with equal pop-
ulation variances, you take the critical values from the Student’s t-distribution 
with n1 + n2 – 2 degrees of freedom, which gives you the following critical values:

 ✓ Right-tailed test: 

 ✓ Left-tailed test: 

 ✓ Two-tailed test: 

As an example, say a marketing company is interested in determining 
whether men and women are equally likely to buy a new product. The com-
pany randomly chooses samples of men and women and asks them to assign 
a numerical value to their likelihood of buying the product (1 being the least 
likely, and 10 being the most likely).

Based on past experience, the population variances are assumed to be equal. 
The first step is to assign one group to be the first population (“population 1”) 
and the other group to be the second population (“population 2”). The com-
pany designates men as population 1 and women as population 2. 

The next step is to choose samples from both populations. (The sizes of these 
samples do not have to be equal.) Suppose that the company chooses samples 
of 21 men and 21 women. These samples are used to compute the sample mean 
and sample standard deviation for both men and women. (Sample means are 
covered in Chapter 3; sample standard deviations are covered in Chapter 4.)

Assume that the sample mean score of the men is 7.2; the sample mean score 
of the women is 6.7. Also assume that the sample standard deviation of the 
men is 0.4, and the sample standard deviation of the women is 0.3. With this 
data in place, the null hypothesis that the population mean scores are equal 
is tested by the marketing company at the 5 percent level of significance.

You can summarize the sample data like so:

 = 7.2 and  = 6.7

s1 = 0.4 and s2 = 0.3

n1 = 21 and n2 = 21

The null hypothesis is H0: μ1 = μ2.The alternative hypothesis is H1: μ1 ≠ μ2.
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To compute the test statistic, you first calculate the pooled variance:

You then substitute this result into the test statistic formula:

You can find the appropriate critical values from Table 12-5 (which is an 
excerpt from the Student’s t-table, covered in Chapter 11). These are found 
as follows. The top row of the Student’s t-table lists different values of tα, 
where the right tail of the Student’s t-distribution has a probability (area) 
equal to α (“alpha”).

In this case, alpha (α) is 0.05; using a tail area of 0.025 (α/2) and 40 degrees of 
freedom, you find that the critical values are:

Table 12-5 The Student’s t-Distribution with a Large  
 Number of Degrees of Freedom
Degrees of 
Freedom (df)

t0.10 t0.05 t0.025 t0.01 t0.005

30 1.310 1.697 2.042 2.457 2.750
40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660
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 Note that with a large number of degrees of freedom, the Student’s t-distribution  
closely resembles the standard normal distribution (see Chapter 9 for more 
discussion of the normal distribution). For example, if you perform a two-
tailed hypothesis test with α = 0.05, the critical values drawn from the stan-
dard normal distribution are ±1.96, compared with ±2.000 for the Student’s 
t-distribution with 60 degrees of freedom.

Because the test statistic (4.587) exceeds the positive critical value (2.021), 
the null hypothesis H0: μ1 = μ2 is rejected.

With a two-tailed test, there are actually two alternatives available to the null 
hypothesis: H1: μ1 > μ2 (that is, the mean rating among men is greater than the 
mean rating among women) or H1: μ1 < μ2 (that is, the mean rating among men 
is less than the mean rating among women). In this case, the test statistic is 
large and positive, which suggests that the mean for men is greater than the 
mean for women. A large and positive test statistic indicates that the sample 
mean for men is significantly greater than the sample mean for women. In 
other words, men are more likely to buy the new product than women.

Unequal population variances: At least one sample is small
If the variances of two populations aren’t equal (or you don’t have any reason 
to believe that they’re equal) and at least one sample is small (less than 30), 
the appropriate test statistic is

In this case, you get the critical values from the t-distribution with degrees of 
freedom equal to

 This value isn’t necessarily equal to a whole number; if the resulting value con-
tains a fractional part, you must round it to the next closest whole number.

For example, assume that Major League Baseball (MLB) is interested in deter-
mining whether the mean number of runs scored per game is higher in the 
American League (AL) than in the National League (NL). The population vari-
ances are assumed to be unequal. 
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The first step is to assign one group to represent the first population (“popu-
lation 1”) and the other group to represent the second population (“popu-
lation 2”). MLB designates the American League as population 1 and the 
National League as population 2. 

The next step is to choose samples from both populations. Suppose that MLB 
choose a sample of 10 American League and 12 National League teams. The 
results are used to compute the sample mean and sample standard deviation 
for both leagues. Assume that the sample mean for runs scored among the AL 
games is 8.1, whereas the sample mean for the NL games is 7.9. The sample 
standard deviation is 0.5 for AL games and 0.3 for NL games.

MLB tests the null hypothesis that the population mean scores are equal at 
the 5 percent level of significance.

Here’s a summary of the sample data:

 = 8.1 and  = 7.9

s1 = 0.5 and s2 = 0.3

n1 = 10 and n2 = 12

The null hypothesis is

H0: μ1 = μ2

Because MLB is interested in determining whether the mean number of 
runs scored per game is higher in the American League than in the National 
League, you use a right-tailed test. The alternative hypothesis is H1: μ1 > μ2.

In other words, the test is designed to find strong evidence that the mean of 
population 1 is greater than the mean of population 2. You then solve the test 
statistic as follows:
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And you find the degrees of freedom like so:

You round down the value of 14.167 to 14 because the degrees of freedom 
must be a whole number (or integer). With 14 degrees of freedom and a 5 per-
cent level of significance, the critical value is . 

This result is obtained from Table 12-1 by finding the column headed t0.05 and 
the row corresponding to 14 degrees of freedom.

Because the test statistic (1.109) is below the critical value (1.761), the null 
hypothesis that H0: μ1 = μ2 fails to be rejected. There’s insufficient evidence 
to conclude that more runs are scored during American League games than 
National League games.

Unequal population variances: Both sample sizes are large
If the variances of two populations aren’t equal, and the size of both samples 
is 30 or greater, the appropriate test statistic is

This test statistic is based on the standard normal distribution.

As an example, say that a restaurant chain is interested in finding out 
whether the average sale per customer is the same in its domestic and for-
eign restaurants. The population variances are assumed to be unequal. The 
restaurant chooses a random sample of 40 domestic and 50 foreign restau-
rants, designating domestic restaurants as population 1 and foreign restau-
rants as population 2.
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The sample mean spending per customer is $5.14 in the domestic market and 
$4.59 in the foreign market. The sample standard deviation is $0.54 in the 
domestic market and $0.38 in the foreign market. The null hypothesis that 
the population mean spending is equal in the two markets is tested at the 5 
percent level of significance.

Here’s a summary of this data:

 = 5.14 and  = 4.59

s1 = 0.54 and s2 = 0.38

n1 = 40 and n2 = 50

The null hypothesis is H0: μ1 = μ2.

Because example requires a two-tailed test, the alternative hypothesis is H1: 
μ1 ≠ μ2.

You find the test statistic like so:

The critical values are then  (see Table 12-3).

Because the test statistic (5.452) is greater than the positive critical value 
(1.96), the null hypothesis H0: μ1 = μ2 is rejected.

Because this is a two-tailed test, you may reject the null hypothesis in favor of 
the alternative H1: μ1 > μ2 (that is, mean spending per customer is greater in the 
domestic market than the foreign market) or H1: μ1 < μ2 (that is, mean spend-
ing per customer is lower in the domestic market than the foreign market.) 
Because the test statistic is large and positive, the alternative H1: μ1 > μ2 is 
chosen. In other words, mean spending per customer in the domestic market 
is greater than in the foreign market.
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Working with dependent samples
You can choose samples to compare the mean of a population before and 
after a given event. In this case, the samples aren’t independent; instead, 
they’re dependent, or paired samples. Examples of paired samples include:

The cholesterol readings of randomly selected patients before taking a 
new drug and the cholesterol readings of the same patients after taking 
the drug

The grade point averages of randomly chosen students before being 
tutored and the grade point averages of the same students after being 
tutored

The productivity of a randomly selected group of employees prior to 
taking a new training course and the productivity of the same employees 
after taking the training course

With paired samples, the null hypothesis is based on the differences between 
the sample elements. Instead of stating that the population means are equal, 
the null hypothesis is that the difference between the population means 
equals 0.

When you’re testing hypotheses about the equality of two population means 
with paired samples, you write the null hypothesis as

H0: μd = 0

where μd represents the mean difference between the two populations; it 
equals μd = μ1 – μ2.

The three possible alternative hypotheses are

 ✓ Right-tailed test: H1: μd > 0. In this case, the alternative hypothesis is 
that the mean of population 1 is greater than the mean of population 2.

 ✓ Left-tailed test: H1: μd < 0. In this case, the alternative hypothesis is that 
the mean of population 1 is less than the mean of population 2.

 ✓ Two-tailed test: H1: μd ≠ 0. In this case, the alternative hypothesis is that 
the means of populations 1 and 2 aren’t equal.

For paired samples, the test statistic is always based on the Student’s  
t-distribution:

Here,  is the average difference between paired samples, and sd is the stan-
dard deviation of the sample differences.
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Compute the mean of the differences like this:

This formula indicates that you calculate the average difference between the 
paired samples by adding up all the individual differences and then dividing 
by the total number of elements in each sample..

Compute the standard deviation of the differences like this:

Note that this is the sample standard deviation formula (covered in Chapter 4.)

With paired samples, you take the critical values from the Student’s 
 t-distribution with n – 1 degrees of freedom, where n is the number of paired 
observations.

For example, say a pharmaceutical company is testing a new diet pill to deter-
mine whether taking it leads to weight loss. The company chooses a sample 
of eight volunteers. Table 12-6 shows the mean weights of these individuals 
before and after using the diet pill, along with the necessary calculations for 
computing the sample standard deviation:

Table 12-6 Paired Differences Between Two Samples
Subject Weight Prior to 

Taking Diet Pill (x1)
Weight After 
Taking Diet Pill (x2)

di =  
x1 – x2

1 192 190 2 1.891
2 189 185 4 0.391
3 204 199 5 2.641
4 177 177 0 11.391
5 156 151 5 2.641
6 228 224 4 0.391
7 244 239 5 2.641
8 201 199 2 1.891

Sum 27 23 .875
Mean 3 .375
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The company tests the null hypothesis that weight remains unchanged after 
taking the diet pill at the 5 percent level of significance. The null hypothesis 
is H0: μ1 = μ2.

Because the pharmaceutical company is looking for strong evidence that the 
weights of the volunteers dropped after taking the pill, it uses a right-tailed 
test. (In other words, the mean weights of the volunteers before taking the 
pill is greater than the mean weights of the volunteers after taking the pill.)

The alternative hypothesis is H1: μ1 > μ2.

You work through the test statistic as follows:

 1. The first step is to compute the mean of the differences:

  

 2. The next step is to compute the sample standard deviation of the 
 differences:

  

 3. These results are used to compute the test statistic:

  

The critical value is found in Table 12-1: 

Because the test statistic (5.168) exceeds the critical value (1.895), the null 
hypothesis is rejected in favor of the alternative hypothesis, which states 
that the difference between the weights prior to taking the pill and after 
taking the pill is positive. The results show that the pills are contributing to 
weight loss.



Chapter 13

Testing Hypotheses about Multiple 
Population Means

In This Chapter
▶ Understanding the properties of the F-distribution
▶ Implementing the ANOVA methodology
▶ Testing hypotheses about the equality of multiple population means

T 
he analysis of variance (ANOVA) methodology allows you to directly 
compare the means of two or more populations. In Chapter 12, I show 

you how to test hypotheses about the equality of two population means, but 
with ANOVA, you can test hypotheses about the equality of any number of 
population means. You can use ANOVA for a wide variety of applications, 
such as evaluating claims about the effectiveness of competing products, 
determining whether a new production process reduces costs, identifying the 
most profitable products to produce, and so forth.

The ANOVA methodology is based on a continuous distribution known as 
the F-distribution. I cover the properties of the F-distribution in depth in this 
chapter, as well as techniques for computing probabilities under this distri-
bution. I also show you how to calculate the moments of the F-distribution. 
The F-distribution reappears in later chapters, including Chapters 14 and 16.

Getting to Know the F-Distribution
The F-distribution is a continuous probability distribution, which means that 
it is defined for an infinite number of different values. (Continuous probability 
distributions, such as the normal distribution, are introduced in Chapter 9.)
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The F-distribution (named after the statistician Sir Ronald Fisher) can be 
used for several types of applications, including testing hypotheses about 
the equality of two population variances and testing the validity of a multiple 
regression equation. (Testing hypotheses about the equality of two popula-
tion variances is covered in Chapter 14; multiple regression analysis is cov-
ered in Chapter 16.)

The F-distribution shares one important property with the Student’s 
 t-distribution (introduced in Chapter 11): Probabilities are determined by a 
concept known as degrees of freedom. Unlike the Student’s t-distribution, the 
F-distribution is characterized by two different types of degrees of freedom — 
numerator and denominator degrees of freedom.

The F-distribution has two extremely important properties:

 ✓ It’s defined only for positive values.

 ✓ It’s not symmetrical about its mean; instead, it’s positively skewed.

A distribution is positively skewed if the mean is greater than the median. 
(The mean and the median are introduced in Chapter 3. The mean is the aver-
age value of a distribution, and the median is the midpoint; half of the values 
in the distribution are below the median, and half are above.)

A good example of a positively skewed distribution is household incomes. 
Suppose that half of the households in a country have incomes below $50,000 
and half have incomes above $50,000; this indicates that the median house-
hold income is $50,000. Among households with incomes below $50,000, 
the smallest possible value is $0. Among households with incomes above 
$50,000, there may be incomes of several million dollars per year. This imbal-
ance between incomes below the median and above the median causes the 
mean to be substantially higher than the median. Suppose for example that 
the mean income in this case is $120,000. This shows that the distribution of 
household incomes is positively skewed.

Another key property of the F-distribution is that it’s uniquely characterized by 
two values, or parameters, known as degrees of freedom (df). These are known 
as numerator degrees of freedom and denominator degrees of freedom.

Figure 13-1 shows a graph of the F-distribution for different combinations of 
numerator and denominator degrees of freedom. In each case, numerator 
degrees of freedom are listed first, and denominator degrees of freedom are 
listed second (for example, 1,5 indicates 1 numerator degree of freedom, and 5 
denominator degrees of freedom). The level of significance in each case is 0.05.

A level of significance is used to test a hypothesis. (Hypothesis testing is cov-
ered in detail in Chapter 12.) A hypothesis test begins with a null hypothesis; 



235 Chapter 13: Testing Hypotheses about Multiple Population Means

this is a statement that’s assumed to be true unless there is strong contrary 
evidence. There is also an alternative hypothesis; this is a statement that is 
accepted in place of the null hypothesis if there’s sufficient evidence to reject 
the null hypothesis.

The level of significance, designated α (alpha), refers to the probability of 
incorrectly rejecting the null hypothesis when it is actually true. This is 
known as a Type I error. By contrast, a Type II error occurs when you fail to 
reject the null hypothesis when it’s actually false. Therefore, with a level of 
significance of 0.05, there is a 5 percent chance of committing a Type I error.

Figure 13-1 shows that the distribution isn’t defined for negative values 
(as you can see, no negative values appear along the horizontal axis). 
Additionally, as the number of degrees of freedom increases, the shape of the 
distribution shifts to the right. The distribution has a long right tail (more for-
mally, it’s skewed to the right, or positively skewed).

 

Figure 13-1:  
The shape 

of the 
F-distribution 

varies with 
its degrees 

of free-
dom (df).

 

In the following sections, I go into even more detail about the F-distribution, 
such as the properties of the F random variable and show you how to com-
pute the moments of the F-distribution.
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Defining an F random variable
The F-distribution is defined in terms of the chi-square (χ2) distribution (see 
Chapter 14 for details). The chi-square distribution is a continuous distribu-
tion that is characterized by its degrees of freedom. Like the F-distribution, 
the chi-square distribution is only defined for positive values and is posi-
tively skewed.

The chi-square distribution has several different applications, including test-
ing hypotheses about the variance of a population and testing hypotheses 
about the probability distribution followed by a population.

The following equation shows that an F random variable is the ratio of two 
independent chi-square random variables (  and ) and their respective 
degrees of freedom (ν1 and ν2):

 is a random variable that follows the F-distribution and has ν1 numera-
tor degrees of freedom and ν2 denominator degrees of freedom.

Measuring the moments  
of the F-distribution
Moments are summary measures of a probability distribution and include the 
following: 

 ✓ The expected value is known as the first moment of a probability distri-
bution and represents the mean or average value of a distribution.

 ✓ The variance is the second central moment and shows how spread out 
or scattered the values of a distribution are around the expected value.

 ✓ The standard deviation isn’t a separate moment but is the square root of 
the variance. 

For most applications, the standard deviation is more useful than the vari-
ance (because the standard deviation is measured in the same units as the 
expected value whereas the variance is not). For the F-distribution, you use 
this formula to determine the expected value:
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E(X) represents the expected value, and ν2 represents the denominator 
degrees of freedom (defined in the previous section).

 The expected value formula requires the denominator degrees of freedom 
to be greater than 2. Otherwise, the expected value becomes negative or 
 undefined.

The expected value represents the average value of the F-distribution. For 
example, Figure 13-1 shows a graph of the F-distribution with 5 numerator 
degrees of freedom and 5 denominator degrees of freedom. The expected 
value equals:

Figure 13-1 also shows a graph of the F-distribution with 20 numerator 
degrees of freedom and 20 denominator degrees of freedom. The expected 
value equals:

This shows that the average value of the F-distribution with 20 numerator 
degrees of freedom and 20 denominator degrees of freedom is less than the 
average value of the F-distribution with 5 numerator degrees of freedom and 
5 denominator degrees of freedom.

To compute the variance, you use this formula:

 The variance formula requires the denominator degrees of freedom to be 
greater than 4; otherwise, the variance becomes negative or undefined.
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The standard deviation is the square root of the variance:

The variance and the standard deviation are used as measures of how spread 
out the values of the F-distribution are compared with the expected value.

For example, for the F-distribution with 5 numerator degrees of freedom and 
5 denominator degrees of freedom, the variance equals

The standard deviation equals the square root of 8.89, or 2.98.

For the F-distribution with 20 numerator degrees of freedom and 20 denomi-
nator degrees of freedom, the variance equals

The standard deviation equals the square root of 0.29, or 0.54.

In Figure 13-1, the F-distribution with 20 numerator degrees of freedom and 
20 denominator degrees of freedom has a tail that falls off very rapidly (so 
that the distribution is less spread out) compared with the F-distribution 
with 5 numerator degrees of freedom and 5 denominator degrees of freedom; 
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therefore, the distribution with 20 numerator and denominator degrees of 
freedom has a lower variance and standard deviation.

Using ANOVA to Test Hypotheses
You use analysis of variance (ANOVA) to test hypotheses about the equal-
ity of two or more population means. ANOVA is based on experiments per-
formed on subjects that are independent of each other; in other words, they 
are not related to each other. For example, suppose that a department store 
chain wants to compare the mean sales of household appliances at its stores 
in New York, Boston, and Philadelphia. Because these stores are in differ-
ent geographical locations, the sales at one store don’t influence sales at the 
other stores (they’re independent of each other.) And because the sales at 
these stores are independent, ANOVA can be used to test the hypothesis that 
mean sales are equal at all three stores.

As an example of the ANOVA process, suppose a manufacturer is considering 
releasing one of three new types of batteries and wants to determine whether 
one of these batteries has a longer mean lifetime than the others. If so, it will 
manufacture this battery exclusively. Otherwise, it will randomly pick one 
of the three to be manufactured. The proposed names for the three battery 
types are Electrica, Readyforever, and Voltagenow.

In this experiment, battery lifetime is referred to as the dependent variable. The 
hypothesis tested is that the mean battery lifetime is the same for Electrica, 
Readyforever, and Voltagenow. The three battery types are treatments. 

If the mean lifetimes of the Electrica, Readyforever, and Voltagenow batteries 
are different, this may be due to two different sources. These are known as 
variation between groups (battery types) and variation within groups (varia-
tion among batteries of the same type).

 The process used to test whether the mean battery lifetimes are equal for 
each type is known as one-way ANOVA. If the manufacturer wants to compare 
the mean lifetimes according to type and determine if there can be substantial 
differences within each type, a more complex version of ANOVA is used. This 
is known as two-way ANOVA.

In the following sections, I walk you through the necessary steps for testing 
the hypothesis that multiple population means are equal. First, the null and 
alternative hypotheses are explained, followed by a discussion of a concept 
known as the level of significance. I show you how to construct a test statistic 
from the F-distribution and how to find the critical values that the test statis-
tic is compared with. I also explain how the final conclusion is reached.
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 The following procedure is based on the assumptions that

 ✓ The samples chosen are independent of each other

 ✓ The underlying populations have equal variances

 ✓ The populations are normally distributed

Writing the null and alternative 
 hypotheses
The null hypothesis is a statement that’s assumed to be true unless you find 
strong contrary evidence. For testing the hypothesis that three population 
means are equal, you write:

In this expression, 

H0 represents the null hypothesis

μ1, μ2, μ3 represent the means of population 1, 2 and 3

The alternative hypothesis is a statement that you accept in the event that 
the null hypothesis is rejected (for example, there’s strong evidence against 
it). When testing the hypothesis that three population means are equal, the 
alternative hypothesis is simply that the three population means are not 
equal.

This alternative hypothesis can be expressed in different ways, such as:

H1: The three means are not all equal

H1: At least one of the three means is different from the others

In these examples, H1 represents the alternative hypothesis.

Choosing the level of significance
To test a hypothesis, you have to choose a level of significance. The level of 
significance, designated with α, equals the probability of incorrectly reject-
ing the null hypothesis when it’s actually true. This is called a Type I error. A 
Type II error occurs when you fail to reject the null hypothesis when it’s not 
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true. (Check out Chapter 12 for details on Type I and Type II errors in hypoth-
esis testing.)

For many business applications, the level of significance is chosen as 0.05 
(5 percent). Other frequent choices include 0.001, 0.01, and 0.10. 

Computing the test statistic
The test statistic is a numerical value that is used to determine if the null 
hypothesis should be rejected. The form of the test statistic depends on the 
type of hypothesis being tested. If the test statistic has an extremely large 
positive or negative value, this may be a sign that the null hypothesis is 
incorrect and should be rejected.

Constructing the test statistic for ANOVA is quite complex, compared with 
other types of hypothesis tests (see Chapter 12 for a discussion of the steps 
required for hypothesis testing).

Referring to the battery example, assume that the manufacturer randomly 
chooses a sample of four Electrica batteries, four Readyforever batteries, and 
four Voltagenow batteries and then tests their lifetimes. Table 13-1 lists the 
results (in hundreds of hours).

Table 13-1 Battery Lifetimes (in Hundreds of Hours)
Electrica Readyforever Voltagenow

Battery 1 2.4 1.9 2.0
Battery 2 1.7 2.1 2.3
Battery 3 3.2 1.8 2.1
Battery 4 1.9 1.6 2.2

Each element in this table can be represented as a variable with two indexes, 
one for the row and one for the column. In general, this is written as Xij. The 
subscript i represents the row index and j, represents the column index. 
For example, X23 represents the element found in the second row and third 
column. (In Table 13-1, this is 2.3.) X31 represents the element found in the 
third row and the first column. (In Table 13-1, this is 3.2.) Table 13-2 shows 
the appropriate indexes for all the elements in Table 13-1. 
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Table 13-2 Battery Lifetimes Shown with Subscripts
Electrica Readyforever Voltagenow

Battery 1 X11 X12 X13

Battery 2 X21 X22 X23

Battery 3 X31 X32 X33

Battery 4 X41 X42 X43

The data in Table 13-1 is used to construct the test statistic. The first step in 
constructing the test statistic is to calculate the following three measures:

Error sum of squares (SSE)

Treatment sum of squares (SSTR)

Total sum of squares (SST)

The calculations are detailed in the following sections.

Finding the error sum of squares (SSE)
The error sum of squares (abbreviated SSE) is obtained by first computing the 
mean lifetime of each battery type. For each battery of a specified type, the 
mean is subtracted from each individual battery’s lifetime and then squared. 
The sum of these squared terms for all battery types equals the SSE.

SSE is a measure of sampling error. This refers to the fact that the values com-
puted from a sample will be somewhat different from one sample to the next.

To compute the SSE for this example, the first step is to find the mean for each 
column. So, for example, you find the mean of column 1, with this formula:

Here’s what each term means:

 ✓  is the mean of column 1 (the bar indicates that this is a mean). The 
subscripts indicate that this average is computed from all elements 
within column 1.

 ✓  is the value of X in row i and column 1.

 ✓ n1 is the number of elements in column 1.
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So, using the values in Table 13-1, you find the mean of column 1 like so:

In other words, you sum the lifetimes of the four Electrica batteries and 
divide by 4. The mean lifetime of the Electrica batteries in this sample is 2.3.

Similarly, you find the mean of column 2 (the Readyforever batteries) as

And column 3 (the Voltagenow batteries) as

The next step is to subtract the mean of each column from each element within 
that column, then square the result. I set up the calculations in Table 13-3.
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Table 13-3 Battery Lifetimes: Squared Differences  
 from the Column Means

Electrica Readyforever Voltagenow
Battery 1 (2.4 – 2.3)2 = 0.01 (1.9 – 1.85)2 = 0.0025 (2.0 – 2.15)2 = 0.0225
Battery 2 (1.7 – 2.3)2 = 0.36 (2.1 – 1.85)2 = 0.0625 (2.3 – 2.15)2 = 0.0225
Battery 3 (3.2 – 2.3)2 = 0.81 (1.8 – 1.85)2 = 0.0025 (2.1 – 2.15)2 = 0.0025
Battery 4 (1.9 – 2.3)2 = 0.16 (1.6 – 1.85)2 = 0.0625 (2.2 – 2.15)2 = 0.0025
Sum 1 .34 0 .13 0 .05

For example, because 2.3 is the mean of column 1, you subtract 2.3 from each 
element in column 1. You square the result in each row, and the sum of these 
squared values is 1.34. Repeat the process for columns 2 and 3 to get sums of 
0.13 and 0.05, respectively. Add up the sums to get the error sum of squares 
(SSE): 1.34 + 0.13 + 0.05 = 1.52. 

The error sum of squares shows how much variation there is among the life-
times of the batteries of a given type. The smaller the SSE, the more uniform 
the lifetimes of the different battery types.

Calculating the treatment sum of squares (SSTR)
After you find the SSE, your next step is to compute the treatment sum of 
squares (SSTR). This is a measure of how much variation there is among the 
mean lifetimes of the battery types. With a low SSTR, the mean lifetimes of 
the different battery types are similar to each other.

First, you need to calculate the overall average for the sample, known as the 
overall mean or grand mean. In the battery example from the previous sec-
tions, you have 12 total observations (four batteries chosen from each of 
three battery types; the data are in Table 13-1). You may obtain the overall 
mean by adding up the 12 sample values and dividing by 12:

You then compute the SSTR with the following steps for each column:

 1. Compute the squared difference between the column mean and the 
overall mean.

 2. Multiply the result by the number of elements in the column.
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So in this example, SSTR equals 
.

The calculations are based on the following results obtained in previous 
 sections:

 ✓ There are four observations in each column.

 ✓ The overall mean is 2.1.

 ✓ The column means are 2.3 for column 1, 1.85 for column 2 and 2.15 for 
column 3.

After you compute SSE and SSTR, the sum of these terms is calculated, giving 
the total sum of squares (SST). This is shown in the next section.

Computing the total sum of squares (SST)
The total sum of squares (SST) equals the sum of the SSTR and the SSE (see 
the preceding sections). So using the battery example, you get

When you compute SSE, SSTR, and SST, you’re ready to proceed to the next 
step in computing the test statistic. The test statistic is computed from the 
mean (average) of SSE and SSTR; these are known as: 

Error mean square (MSE)

Treatment mean square (MSTR)

The calculations are detailed in the following sections.

Getting the error mean square (MSE)
After you find the sums of squares (see sections “Calculating the treatment 
sum of squares (SSTR)” and “Computing the total sum of squares (SST)”), 
you compute the means of the SSE and SSTR. These are known as error mean 
square (MSE) and treatment mean square (MSTR).

You find the MSE by dividing the SSE by N (total number of observations) 
minus t (total number of treatments) as shown in this formula:
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In the battery lifetimes example (based on Table 13-1), there are a total of 12 
observations or elements in the sample data, so N = 12; there are also three 
battery types, so the number of treatments is t = 3. Therefore, the MSE is

MSE measures the average variation within the treatments; for example, how 
different the battery means are within the same type.

Getting the treatment mean square (MSTR)
The MSTR equals the SSTR divided by the number of treatments, minus 1 (t – 1), 
which you can write mathematically as:

So you find the MSTR for the battery example, (here, t is the number of bat-
tery types) as follows:

MSTR measures the average variation among the treatment means, such as 
how different the means of the battery types are from each other.

Solving for the F-statistic
The test statistic for the ANOVA process follows the F-distribution, and it’s 
often called the F-statistic. The test statistic is computed as follows:

The test statistic shows the ratio of the treatment mean square (MSTR) to 
the error mean square (MSE). The greater is this value, the more unlikely it 
is that the means of the three batteries are equal to each other. As a result, 
a sufficiently large value of this test statistic results in the null hypothesis 
being rejected.
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Finding the critical values  
using the F-table
Because the F-distribution is based on two types of degrees of freedom, 
there’s one table for each possible value of α (the level of significance). 
Table 13-4 shows the different values of the F-distribution corresponding to a 
0.05 (5 percent) level of significance.

Table 13-4 The F-Distribution with α = 0 .05
ν2\ν1 2 3 4 5 6 7 8 9
2 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
3 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
5 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
6 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
7 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
9 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

The numbers across the top row of the table represent the numerator 
degrees of freedom (ν1). You read across this top row to find the appropriate 
numerator degrees of freedom. The first column represents the denominator 
degrees of freedom (ν2); you read down this column to find the appropriate 
denominator degrees of freedom. The critical value is found at the inter-
section of the row and column you choose. For example, suppose that the 
numerator degrees of freedom is 5 and the denominator degrees of freedom 
is 7. The appropriate test statistic is 3.97.

For the one-way ANOVA process, you compute the numerator and denomina-
tor degrees of freedom as follows:

Numerator degrees of freedom = treatments – 1 = t – 1 = 3 – 1 = 2

Denominator degrees of freedom = total observations minus treatments = 
N – t = 12 – 3 = 9
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In this example, you’re looking for a right-tail area of 5 percent under the 
F-distribution with numerator degrees of freedom = ν1 = t – 1 = 2 and denomi-
nator degrees of freedom = ν2 = N – t = 9. You find this critical value at the 
intersection of the 2 degrees of freedom column and the 9 degrees of freedom 
row. The critical value equals 4.26, which you can write as

The superscripts represent the numerator and denominator degrees of free-
dom, respectively. The subscript represents the level of significance.

Coming to the decision
The one-way ANOVA hypothesis test is a right-tailed test. This type of test 
leads to the rejection of the null hypothesis if the value of the test statistic 
is too large to be consistent with the null hypothesis; in other words, if the 
test statistic is greater than the critical value, the null hypothesis is rejected. 
(Otherwise, the null hypothesis is not rejected; there is not enough evidence 
against it.)

In the battery lifetime example introduced in the section “Using ANOVA to 
Test Hypotheses,” the test statistic equals 1.24, whereas the critical value 
equals 4.26. Because the test statistic does not exceed the critical value, the 
null hypothesis that the three population means are equal is not rejected. 
This indicates that there is not enough evidence against the hypothesis of 
equal means to reject it.

Figure 13-2 shows the F-distribution with 2 numerator degrees of freedom 
and 9 denominator degrees of freedom and a level of significance of 0.05. The 
test statistic is 1.24 and the critical value is 4.26.

The area to the right of the critical value is the rejection region. This is the 
area under the F-distribution, which is too far away from the critical value to 
be consistent with the null hypothesis. Because the test statistic doesn’t fall 
within the rejection region, the null hypothesis fails to be rejected. The result 
indicates that there is not enough evidence against the assumed equality of 
the mean lifetimes of Electrica, Readyforever, and Voltagenow. Because the 
manufacturer wants to produce the battery with the longest mean lifetime, it 
can choose any of the three.
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Figure 13-2: 
The null 
hypoth-

esis is not 
rejected.

 

Using a spreadsheet
As an alternative to computing the test statistic and the critical value, you 
can use a spreadsheet program, such as Excel, to test the null hypothesis 
that the three population means are equal. If you choose to use a spread-
sheet, you’d skip the steps in the sections “Computing the test statistic” and 
“Finding the critical values using the F-table.”

The output of the spreadsheet program is obtained as follows. The first step 
is to enter the sample data:

Electrica ReadyForever Voltagenow
Battery 1 2.4 1.9 2.0
Battery 2 1.7 2.1 2.3
Battery 3 3.2 1.8 2.1
Battery 4 1.9 1.6 2.2

If you are using Excel, the next step is to choose the Data tab, then select 
Data Analysis. This opens up a dialog box containing several statistical pro-
cedures that may be performed. The appropriate choice for this example 
is ANOVA: Single Factor. Click this choice to open a new dialog box; enter 
the range of cells containing the data into the box Input Range. Be sure to 
check the box Labels in First Row. Click the OK button to produce the output 
shown in Figure 13-3.
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Figure 13-3: 
The results 

of a one-
way ANOVA 

test.
 

Figure 13-3 shows the following key results:

 ✓ The column means in the Average column of the Summary section (2.3, 
1.85 and 2.15)

 ✓ The error sum of squares (SSE) in the Within Groups row of the ANOVA: 
Source of Variation section (1.52)

 ✓ The treatment sum of squares (SSTR) in the Between Groups row of the 
ANOVA: Source of Variation section (0.42)

 ✓ The total sum of squares (SST) or Total (1.94)

 ✓ The treatment mean square (MSTR) at the intersection Between Groups 
and the MS column under the ANOVA: Source of Variation section (0.21)

 ✓ The error mean square (MSE) at the intersection of Within Groups and 
MS under the ANOVA: Source of Variation section (0.168889)

 ✓ The F-statistic at the intersection of Between Groups and the F column 
(1.243421)

 ✓ The critical value at the intersection of Between Groups and F crit 
Column (4.256495)

The printout confirms the results of the previous sections. Because the test 
statistic is less than the critical value, the null hypothesis that the mean bat-
tery lifetimes are equal should not be rejected.



Chapter 14

Testing Hypotheses about  
the Population Mean

In This Chapter
▶ Introducing the chi-square distribution
▶ Testing hypotheses about the variance of a single population
▶ Testing hypotheses about the equality of two population variances
▶ Implementing goodness of fit tests with the chi-square distribution

T 
his chapter covers two types of hypothesis tests: tests about the  
population variance, and goodness of fit tests. Goodness of fit tests 

determine whether a population follows a specified distribution, such as the 
normal distribution (for a thorough introduction to the normal distribution, 
see Chapter 9). Because many business applications rely on the assumption 
of normality, goodness of fit tests are particularly valuable.

To implement a goodness of fit test, you use a continuous distribution known 
as the chi-square distribution. This distribution has many interesting features, 
which I explain in detail and illustrate throughout this chapter; its properties 
are quite different from the normal distribution.

I also explain how to use a chi-square table to compute probabilities under 
the chi-square distribution, and I show you how to compute moments for the 
chi-square distribution. (Moments are summary measures of a probability 
distribution that provide a great deal of useful information in a very compact 
form.)

You can use the chi-square distribution to test hypotheses about the variance  
of a population. For example, you can use the chi-square distribution to 
determine the level of risk contained in a stock portfolio. (The process of 
testing a hypothesis about a population variance is closely related to other 
types of hypothesis tests, which I cover in Chapter 12.)
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What about two populations, you ask? Testing hypotheses about the equality 
of two population variances requires yet another continuous distribution: 
the F-distribution. (I provide an overview of the F-distribution in Chapter 13.) 
The F-distribution also plays a key role in multiple regression analysis (see 
Chapter 16).

Staying Positive with the  
Chi-Square Distribution

The chi-square distribution (χ2) is a continuous probability distribution, 
which means that it’s defined for an infinite number of values. I introduce 
continuous probability distributions, including the normal, Student’s t-, and 
F-distributions, in Chapters 9, 11, and 13. (To read about discrete probability 
distributions, check out Chapter 8.)

The chi-square distribution has several different applications. This section 
shows you how to use the chi-square distribution to:

 ✓ Test hypotheses about the variance of a population

 ✓ Carry out “goodness of fit” tests

Portfolio managers, financial analysts, traders, and so on regularly use  
continuous distributions in business applications to analyze the properties 
of financial variables. Two of the more widely used continuous distributions 
are the normal and Student’s t-distributions (see Chapters 9 and 11, respec-
tively). Many business situations can be described with the normal distri-
bution, such as returns to stocks, corporate profits, and so on. The normal 
and Student’s t-distribution can also be used to construct confidence inter-
vals (described in Chapter 11) and test hypotheses about population means 
(described in Chapter 12.)

As with the Student’s t-distribution, the chi-square distribution is uniquely 
characterized by a value known as degrees of freedom (df). The number of 
degrees of freedom is based on the sizes of samples used to estimate  
population parameters, such as the mean or the variance.

Here are two important features of the chi-square distribution:

 ✓ It’s defined only for positive values.

 ✓ It’s not symmetrical about its mean; instead, it’s positively skewed.
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A distribution may be symmetrical about its mean, in which case the area 
below the mean is a mirror image of the area above the mean. For a symmetric 
distribution, the mean equals the median. (I discuss symmetry in Chapter 3.) 
A distribution may also be negatively skewed, where the mean is less than 
the median, or positively skewed, where the mean is greater than the median.

The chi-square distribution is positively skewed; graphically, it has a long 
right tail. The next section shows several graphs of the chi-square distribution  
with different numbers of degrees of freedom. The smaller the degrees 
of freedom, the more skewed the distribution is; with a larger number of 
degrees of freedom, the distribution becomes more symmetrical and begins 
to resemble the normal distribution.

Following the graphs of the chi-square distribution is a discussion of how to 
compute the moments of the chi-square distribution.

Representing the chi-square  
distribution graphically
Figures 14-1, 14-2, and 14-3 show the chi-square distribution with 5, 10, and 
30 degrees of freedom. In each case, the horizontal axis represents different 
possible values of the chi-square distribution; the vertical axis represents the 
corresponding probabilities. With a continuous distribution such as the  
chi-square, probabilities correspond to areas under the curve.

 

Figure 14-1:  
The  

chi-square 
distribution 

 with 5 
degrees of 

freedom.
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Figure 14-2:  
The  

chi-square 
distribution  

with 10 
degrees of 

freedom.
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Figure 14-3:  
The  

chi-square 
distribution  

with 30 
degrees of 

freedom.
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As you can see in each figure, the distribution isn’t defined for negative 
values — that is, no negative values appear along the horizontal axis. 
Additionally, as the number of degrees of freedom increases, the distribution 
shifts to the right and begins to resemble the normal distribution (it has a 
long right tail and is skewed to the right).
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Defining a chi-square random variable
A chi-square random variable is composed of a sum of independent, squared 
standard normal random variables (Z2) (see Chapter 7 for details). The standard 
normal distribution is the special case of the normal distribution where the 
mean (μ) equals 0 and the standard deviation (σ) equals 1. You can write the 
definition of a chi-square random variable mathematically as

Because each standard normal random variable is squared, the sum of these 
terms is guaranteed to be positive (which is why the chi-square distribution 
isn’t defined for negative values).

The letter ν (or “nu”) represents the number of terms in this expression; 
here, ν is the number of degrees of freedom of the distribution. For example, 
the chi-square distribution with 5 degrees of freedom is defined as follows:

Checking out the moments of  
the chi-square distribution
Moments are summary measures of a probability distribution (see Chapter 8 
for details) and include the expected value (or mean) and the variance (how 
spread out the values are). The standard deviation is the square root of the 
variance.

Each probability distribution has its own unique set of formulas for computing 
the expected value, variance, and standard deviation. For the chi-square  
distribution, these are given as follows:

 ✓ The expected value equals the number of degrees of freedom (v) of the 
distribution:

  

  For example, in a chi-square distribution with 5 degrees of freedom, the 
expected value is 5.

 ✓ The variance equals two times the number of degrees of freedom:

  

  For example, for the chi-square distribution with 5 degrees of freedom, 
the variance is 2 × 5 = 10.
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 ✓ The standard deviation is the square root of the variance:

  

  For example, for the chi-square distribution with 5 degrees of freedom, the 
standard deviation is the square root of 10, which is approximately 3.16.

 Moments capture the key properties of a probability distribution. The 
expected value is another name for the average; the variance and standard 
deviation show how “spread out” the values of the distribution are relative to 
the expected value.

Testing Hypotheses about  
the Population Variance

In business, one of the most widely used applications of the chi-square  
distribution is to determine whether the variance of a population equals a 
specified value. The basic approach to testing a hypothesis about the  
population variance exactly mirrors the approach used for the population 
mean (which I cover in Chapter 12). The most important changes take place 
in the test statistic and critical values you use.

In the following sections, I walk you through the steps to testing hypotheses 
about the population variance.

Defining what you assume to  
be true: The null hypothesis
The first step in the hypothesis testing procedure is writing the null hypothesis, 
which is a statement that’s assumed to be true unless strong contrary  
evidence exists against it. For example, suppose that a manufacturer is  
concerned that the variance of the computer chips that it produces exceeds 
0.001, which would indicate that there’s a problem with the production  
process. The manufacturer could test this hypothesis by selecting a sample 
of computer chips and computing their sample variance.

The manufacturer may not want to make any changes to the production  
process unless clear evidence shows that it’s necessary. Therefore, it uses 
the null hypothesis that the variance equals 0.001. If this hypothesis is 
rejected, the alternative that the variance exceeds 0.001 is accepted instead. 
Unless the null hypothesis can be disproved with strong evidence, no 
changes are made to the production process. (Hypothesis testing is introduced 
in Chapter 12.)
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For testing hypotheses about the population variance, the null hypothesis 
statement is based on the assumption that the population variance equals 
the hypothesized value of the population (σ0

2). This assumption isn’t  
abandoned without strong contradictory evidence.

Mathematically, you write the null hypothesis as

The variance with a subscript of 0 ( ) is the hypothesized value of the  
variance. This is the value that you believe the population variance is equal 
to. The hypothesis test shows whether this belief is backed up by actual data.

For example, suppose that an economist wants to determine whether the 
variance of the inflation rate over the past 20 years equals 0.0001, in which 
case, you write the null hypothesis as . The economist  
continues to assume that this is the correct variance unless the hypothesis 
test provides strong evidence against this claim.

Stating the alternative hypothesis
Your second step in a hypothesis test is to specify the alternative hypothesis. 
If the statistical evidence against the null hypothesis is strong enough to 
reject it, you need an alternative statement to accept in its place.

The alternative hypothesis is a statement of what you accept to be true if 
the null hypothesis is rejected. For example, the economist in the previous 
section may want to know whether the actual variance is less than 0.0001, 
greater than 0.0001, or simply different from 0.0001 if the null hypothesis is 
rejected.

You can express the alternative hypothesis in three ways: as right-tailed,  
left-tailed, and two-tailed tests.

 ✓ With a right-tailed test, you look for evidence that the actual population 
variance is greater than the hypothesized value.

 ✓ With a left-tailed test, you look for evidence that the population variance 
is less than the hypothesized value.

 ✓ With a two-tailed test, you look for evidence that the population variance 
is either less than or greater than the hypothesized value.

I explore each option in the following sections. (Right-tailed tests, left-tailed 
tests, and two-tailed tests are introduced in Chapter 12.)
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Right-tailed test: Determining whether  
the hypothesized variance is too low
If you’re interested in knowing only whether the population variance is 
greater than the hypothesized value, you use a right-tailed test. In this case, 
you express the alternative hypothesis (H1) as

For example, suppose that a manufacturing company wants to keep the 
weights of its computer chips as uniform as possible. It determined from 
experience that the maximum variance the chips can tolerate is 0.0006 mil-
ligrams squared. (Variances are measured in terms of squared units, as I 
discuss in Chapter 4.) The manufacturing company can test the variance by 
choosing a sample off of the assembly line and computing the sample vari-
ance. In this case, the company can test the hypothesis that the variance 
equals 0.0006 ( ); the alternative hypothesis is that the vari-
ance exceeds (or is greater than) 0.0006 ( ).

The results of this test show whether the manufacturing process is working 
correctly or whether it needs to be adjusted.

Left-tailed test: Determining whether  
the hypothesized variance is too high
If you’re interested in knowing only whether the population variance is 
less than the hypothesized value, you use a left-tailed test. In this case, you 
express the alternative hypothesis as

For example, suppose that an equity analyst is studying the pattern of 
returns to U.S. stocks since the outbreak of the last financial crisis. The  
analyst wants to determine whether markets have begun to stabilize since 
the crisis began, which is indicated by a drop in the variances of the returns 
to U.S. stocks. The analyst believes that one stock is particularly representative 
of the performance of the overall economy. He wants to see whether the  
variance of its returns has remained at 0.0004 or whether it’s fallen below this 
level. In this case, the analyst can test the null hypothesis that the variance 
equals 0.0004 ( ); the alternative hypothesis is that the variance 
is less than 0.0004 ( ).

The results of this test show whether the variance of this stock has fallen 
below 0.0004. If so, the markets have stabilized since the outbreak of the 
financial crisis.
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Two-tailed test: Determining whether the hypothesized  
variance is too low or too high
In some situations, it’s extremely important for you to know whether the  
population variance is greater than or less than the hypothesized value. In 
this case, you use the two-tailed test, and write the alternative hypothesis as

For example, suppose that the variance of the returns to an investor’s portfolio 
has historically been 0.0009; the investor wants to determine whether this 
number has increased or decreased over the past year. In this case, the 
investor can use a two-tailed hypothesis test. The null hypothesis is that the 
variance equals 0.0009 ( ), and the alternative hypothesis is 
that the variance doesn’t equal 0.0009 ( ).

Choosing the level of significance
To test a hypothesis, you have to choose a level of significance. The level of 
significance, designated with α, refers to the probability of rejecting the null 
hypothesis when it’s actually true, called a Type I error. (Chapter 12 provides 
details on Type I and Type II errors in hypothesis testing.)

You must choose the level of significance carefully. The greater the level of 
significance, the greater the likelihood of rejecting the null hypothesis when 
it’s true — and the lower the likelihood of failing to reject the null hypothesis 
when it’s false.

You choose the level of significance based on the relative importance of 
avoiding these errors. For many business applications, the level of significance 
is set to 0.05 (or 5 percent.) Other commonly used values are 0.01 and 0.10.

Calculating the test statistic
To test hypotheses about the population variance, you must draw a sample 
from the underlying population so you can compute the sample variance. 
The sample variance is required to compute the test statistic:

This equation shows that the test statistic follows the chi-square distribution, 
with n – 1 degrees of freedom (n is the sample size); s2 is the sample variance, 
and σ0

2 is the hypothesized value of the population variance.
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This expression is used as a test statistic because it can be shown to follow 
the chi-square distribution with n – 1 degrees of freedom.

The purpose of the test statistic is to determine how extreme a sample statistic 
is (in this case, the sample variance) compared with the hypothesized value 
of the corresponding population parameter (here, the population variance.) 
If the test statistic is too extreme (the value is an extremely large positive or 
negative number), it’s highly unlikely that the null hypothesis is true, and it 
will be rejected. Otherwise, the null hypothesis won’t be rejected.

To determine how extreme the test statistic is, you compare its value to 
one or two numbers known as critical values, depending on the alternative 
hypothesis. When testing hypotheses about the population variance, critical 
values are taken from the chi-square distribution. They represent the cutoff 
point between a specified area under the chi-square distribution.

For example, for the chi-square distribution with 10 degrees of freedom, a 
critical value of 18.30 is the cutoff point between the upper 5 percent of the 
chi-square distribution and the lower 95 percent of the chi-square distribution.

In other words, for a chi-square random variable X,

P(X ≥ 18.30) = 0.05

P(X ≤ 18.30) = 0.95

Determining the critical value(s)
To test a hypothesis about the variance of a population, the critical value(s) 
depends on the alternative hypothesis. Unlike critical values drawn from the 
standard normal distribution or the Student’s t-distribution, the chi-square 
distribution has no negative critical values. Instead, you determine the  
critical values with the alternative hypothesis tests as explained in the  
following sections.

Right-tailed test: Testing hypotheses about the population variance
A right-tailed test has a single critical value because you’re looking only for 
evidence that the test statistic is too large to be consistent with the  
null hypothesis. If you don’t find this evidence, you won’t reject the null 
hypothesis. The form of the critical value is

In this expression,

χ2 = a value chosen from the chi-square distribution
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α = the level of significance of the hypothesis test (for example, 0.01, 0.05, 
0.10, and so on)

n = the sample size

The values of α and n uniquely identify the appropriate test statistic drawn 
from the chi-square distribution. This value represents the threshold of the 
right tail of the chi-square distribution with area α and n – 1 degrees of free-
dom. The area in the right tail is α. You can find this critical value in a chi-
square table, such as Table 14-1.

Table 14-1 The Chi-Square Table
df\Right-
Rail Area

0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01

1 0.00 0.00 0.00 0.016 2.706 3.841 5.024 6.635
2 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210
3 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345
4 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277
5 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086
6 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812
7 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475
8 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090
9 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666
10 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209

For example, suppose you conduct a right-tailed test with a level of significance 
of 0.05 (5 percent). You draw a sample of size 10. Plugging those numbers 
into the critical value, you get

You then look at the chi-square table (Table 14-1). The top row represents 
areas in the right tail of the chi-square distribution. The first column  
represents the number of degrees of freedom.

In this example, you’re looking for a right-tail area of 0.05 with 9 degrees of 
freedom (n – 1 = 10 – 1 = 9). By looking in the row corresponding to 9 degrees 
of freedom and the column corresponding to a right-tail area of 0.05, you see 
that the critical value is 16.919. Therefore,
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As a result, if the test statistic is greater than 16.919, you reject the null 
hypothesis; otherwise, you don’t reject the null hypothesis.

Left-tailed test: Testing hypotheses about the population variance
A left-tailed test has a single critical value because you’re looking only for  
evidence that the test statistic is too small to be consistent with the null 
hypothesis. If you don’t find this evidence, you won’t reject the null  
hypothesis. The form of the test statistic is

This value represents the threshold of the left tail of the chi-square distribution 
with area α and n – 1 degrees of freedom. The area in the right tail is,  
therefore, 1 – α.

Using the example in the previous section and referring to Table 14-1, if you 
do a left-tailed test with a level of significance of 0.05 and a sample of size 10, 
you find the appropriate critical value in the row with 9 degrees of freedom 
but a right-tail area of 0.95, which is

As a result, if the test statistic is less than 3.325, you reject the null hypothesis; 
otherwise, you don’t reject the null hypothesis.

Two-tailed test: Testing hypotheses about the population variance
A two-tailed test has two critical values. You’re looking for evidence that the 
test statistic is too large or too small to be consistent with the null hypothesis. 
If you don’t find this evidence, you won’t reject the null hypothesis. The form 
of the critical values are

The two-tailed test has a right tail and a left tail. Each has an area equal to 
α/2. So, for example, if you do a two-tailed test with a level of significance 
of 0.05 and a sample of size 10, the appropriate critical values are 2.700 and 
19.023 (see Table 14-1).

The boundary of the left 2.5 percent tail of the chi-square distribution is 
2.700, and the boundary of the right 2.5 percent tail of the chi-square  
distribution is 19.023. Note that with the right-tailed test, the right tail has  
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an area of 5 percent; with a left-tailed test, the left tail has an area of 5 per-
cent. With a two-tailed test, the 5 percent area is split between the left and 
right tails; therefore, each has an area of 2.5 percent.

As a result, if the test statistic is less than 2.700 or greater than 19.023, you 
reject the null hypothesis; otherwise, you don’t reject the null hypothesis.

Making the decision
You decide whether to reject the null hypothesis by looking at the relationship 
between the test statistic and the critical value(s). There are three possible 
cases: a right-tailed test, a left-tailed test, and a two-tailed test.

 ✓ Right-tailed test: If the test statistic is greater than the critical value 
  , you reject the null hypothesis H0: σ2 = σ0

2
 in favor of the alternative 

hypothesis H1: σ2 > σ0
2. Otherwise, you don’t reject the null hypothesis.

 ✓ Left-tailed test: If the test statistic is less than the critical value ,  
you reject the null hypothesis H0: σ2 = σ0

2 in favor of the alternative 
hypothesis H1: σ2 < σ0

2. Otherwise, you don’t reject the null hypothesis.

 ✓ Two-tailed test: If the test statistic is less than the critical value ,  
you reject the null hypothesis H0: σ2 = σ0

2 in favor of the alternative 
hypothesis H1: σ2 < σ0

2.

  If the test statistic is greater than the critical value , you reject 
the null hypothesis H0: σ2 = σ0

2 in favor of the alternative hypothesis H1: 
σ2 > σ0

2. Otherwise, you don’t reject the null hypothesis.

As an example of the complete process used to test hypotheses about the 
population variance, suppose that an investor chooses a sample of 30 stocks 
from her portfolio. She calculates the standard deviation of the returns on 
these stocks (that is, their volatility) to be 23 percent on an annual basis. 
The investor wants to know whether the volatility of the entire portfolio is 
less than 25 percent on an annual basis at the 5 percent level of significance. 
(A volatility of 25 percent [0.25] translates into a variance of 0.252 = 0.0625.) 
So the null hypothesis is , and alternative hypotheses is 

.

Because the investor wants to know only whether the variance is less than 
0.0625, you use a left-tailed test. The level of significance is α = 0.05.

With a sample size of 30 and a sample variance of 0.23, the test statistic is
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Because this is a left-tailed test with α = 0.05 and sample size = 30, the 
number of degrees of freedom = 29 (30 – 1). The critical value is, therefore, 

.

You can find the result in a chi-square table, such as Table 14-2.

Table 14-2 The Chi-Square Table with Larger  
 Numbers of Degrees of Freedom

df\Right-
Tail Area

0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01

28 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278
29 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588
30 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892

You find the critical value in the row corresponding to 29 degrees of freedom 
(n – 1 = 30 – 1 = 29) and the column with a right-tail area of 0.095 ([1 – α] =  
[1 – 0.05] = 0.095). The result is 17.708.

To reject this hypothesis, the test statistic must be less than the critical 
value. In this case, the critical value is 24.55, and the test statistic is 17.708; 
therefore, the null hypothesis isn’t rejected. There isn’t enough evidence to 
conclude that the portfolio volatility is less than 25 percent.

Practicing the Goodness of Fit Tests
One of the most important applications of the chi-square distribution is to 
test whether a population conforms to a specific probability distribution. 
This type of test is called a goodness of fit test.

In this section, I show you examples of how to use sample data from a  
population to determine whether the population follows the Poisson  
distribution (covered in Chapter 8) or the normal distribution (discussed in 
Chapter 9). Note that these aren’t the only possible applications of goodness 
of fit tests; in principle, you can compare any population to any probability 
distribution.
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Comparing a population to  
the Poisson distribution
You use the Poisson distribution to describe the distribution of events  
occurring over a given interval of time. To test the hypothesis that a  
population follows the Poisson distribution, you express the null and  
alternative hypotheses as follows:

 ✓ H0: The population follows the Poisson distribution.

 ✓ H1: The population doesn’t follow the Poisson distribution.

Alternatively, the null and alternative hypotheses may include an assumption 
about the parameter λ, which represents the expected number of events that 
occur during a given time frame.

For example, the null and alternative hypotheses could be

 ✓ H0: The population follows the Poisson distribution with λ = 1.

 ✓ H1: The population doesn’t follow the Poisson distribution with λ = 1.

Use this approach if you have reason to believe that the value of λ = 1. In  
this case, the interpretation of the results is slightly different. If the null 
hypothesis that the population follows the Poisson distribution is rejected, 
the population actually follows a different distribution. If the null hypothesis 
that the population follows the Poisson distribution with λ = 1 is rejected, 
the population either doesn’t follow the Poisson distribution or it follows the 
Poisson distribution but with a different value of λ.

One of the unusual features of a goodness of fit test is that you always  
implement the alternative hypothesis as a right-tailed test. Based on the  
construction of the test statistic, the null hypothesis that a population  
follows a specified distribution is rejected only if the test statistic is too large; 
therefore, a goodness of fit test is always right-tailed.

And you construct the test statistic in such a way as to see how closely the 
elements in a sample match up with the assumed probability distribution. To 
construct the test statistic, you choose sample data and arrange them into 
categories.

For example, suppose that a bank manager wants to determine whether the 
distribution of customers that enters the bank during lunch hour (12 noon to 
1 p.m.) follows the Poisson distribution. This information helps the manager 
determine the optimal number of tellers to use during this time period.
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In this case, the population consists of the number of customers that enter 
the bank during lunch hour. Suppose that the manager chooses a random 
sample of 100 lunch hours from the past year and counts the number of 
customer that enters during each of those 100 hours. He then organizes the 
results as shown here:

Number of Customers per Hour Number of Hours
0 9
1 12
2 15
3 20
4 27
5 12
6 5

According to these results, during each hour in the sample, the number of 
customers ranged from 0 to 6, so the manager organizes the data into a total 
of seven categories. The number of customers in each category is known as 
the observed frequency of the category. You must compare these numbers 
with the expected frequencies — the number of customers expected if the  
distribution of customers per hour really does follow the Poisson distribution.

In this example, you can find the expected frequencies for each category 
by computing the Poisson probabilities for each category and multiplying 
the result by the sample size. For example, suppose that the probability of 
three customers entering the bank each hour under the Poisson distribution 
is 0.2240, indicating that in a sample of 100 hours, the expected number of 
customers (or the expected frequency) is 0.2240 × 100 = 22.40 customers. (Of 
course, it’s impossible for 22.40 customers to show up during lunch hour! 
This is simply an average.)

After you determine the expected frequency of each category, you compute 
the test statistic with this formula:

 Here, j is an index for the category being tested, k is the number of total  
categories, Oj is the observed frequency in category j, and Ej is the expected 
frequency in category j.

The closer the observed frequencies are to the expected frequencies, the 
smaller the value of the test statistic. A small value for this statistic indicates 
that the null hypothesis (which states that the population follows the 
Poisson distribution) should not be rejected.
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Because the goodness of fit test is always right-tailed, it has a single critical 
value:

Note that m is a parameter whose value equals 0 if the null hypothesis  
specifies a value of λ and 1 if the null hypothesis doesn’t specify a value of λ.

 Unlike hypothesis tests of the population variance, where the appropriate 
number of degrees of freedom is n – 1, with a goodness of fit test, the  
appropriate number of degrees of freedom is k – 1 – m.

When you determine the values of the test statistic and the critical value, the 
decision rule is to reject the null hypothesis if the test statistic exceeds the 
critical value; otherwise, don’t reject the null hypothesis.

To test the hypothesis that the distribution of customers that enters the 
bank during lunch hour follows the Poisson distribution, the first step is to 
specify the null and alternative hypotheses:

 ✓ H0: The population follows the Poisson distribution.

 ✓ H1: The population doesn’t follow the Poisson distribution.

Assume that the level of significance is 0.05 (5 percent).

Before you construct the table of observed and expected frequencies, you 
must estimate the value of λ from the sample data, because it isn’t specified 
in the null hypothesis. In this case, λ represents the average number of bank 
customers per hour.

Because each possible number of bank customers is repeated many times  
in the sample, the average number of bank customers per hour can be  
computed as a weighted average (see Chapter 3). The formula is

In this formula,

 is the sample mean

Xi is a single sample element

wi is the weight associated with element Xi, which equals the number of 
times that the element appears in the sample
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To compute the numerator of this formula, you multiply each number of  
customers per hour in the sample by the actual number of hours in which 
this number occurred. This is shown as follows:

Number of Customers 
per Hour

Number of Hours Customers per Hour × 
Number of Hours

0 9 (0)(9) = 0
1 12 (1)(12) = 12
2 15 (2)(15) = 30
3 20 (3)(20) = 60
4 27 (4)(27) = 108
5 12 (5)(12) = 60
6 5 (6)(5) = 30
SUM 300

This results in a sum of 300. The denominator is the sum of the weights:

9 + 12 + 15 + 20 + 27 + 12 + 5 = 100

The average number of customers is

You use this result as the value of lambda: λ = 3.

The next step is to compute the expected frequencies for each category. You 
find the probability of no customers entering the bank during the next hour 
when λ = 3 from the Poisson distribution with this formula:

The key terms in this formula are

X = a Poisson random variable

x = number of events (phone calls) that occur

λ = the average number of events that occur per time (hour)

e = a constant equal to approximately 2.71828

! = the “factorial” operator (introduced in Chapter 8)

The factorial operator can only be applied to positive whole numbers and 
zero. So 0! equals 1, as does 1!, and 2! equals (2)(1) = 2; in other words, 2! 
equals itself times all smaller positive whole numbers. Based on this pattern, 
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3! equals (3)(2)(1) = 6, and 4! equals (4)(3)(2)(1) = 24. All remaining factorials 
are computed in the same way. The factorial operator may be used for several 
applications; one of these is to count the number of arrangements that may 
be formed from a collection of objects. For example, if three paintings are 
hung next to each other in the reading room of a library, the number of ways 
the paintings may be arranged equals 3! = 6.

For the bank customer case, the probability of no customers entering the 
bank during the lunch hour is computed with the Poisson formula as follows:

You do the same calculations with the probabilities for X = 1, X = 2 all the way 
up to X = 6. The probability that X = 1 is computed as follows:

The probability that X = 2 is computed as follows:

The probabilities for X = 3, 4, 5, and 6 are computed in a similar manner:

P(X = 3) = 0.2240

P(X = 4) = 0.1680

P(X = 5) = 0.1008

P(X = 6) = 0.0504

Because the sample size is 100, you multiply the probabilities by 100 to get 
the expected frequencies, as shown here:

X = 0: expected frequency = 0.0498(100) = 4.98

X = 1: expected frequency = 0.1494(100) = 14.94

X = 2: expected frequency = 02240(100) = 22.40

X = 3: expected frequency = 0.2240(100) = 22.40
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X = 4: expected frequency = 0.1680(100) = 16.80

X = 5: expected frequency = 0.1008(100) = 10.08

X = 6: expected frequency = 0.0504(100) = 5.04

Substitute these values into the test statistic formula:

Then, you determine the critical value as follows:

The first step is to identify the values of α, k, and m:

 ✓ α = 0.05 because you’re using a level of significance of 0.05 (5 percent).

 ✓ k = 7 because there are seven categories (the number of customers that 
enter the bank during lunch hour is 0, 1, 2, 3, 4, 5, or 6, for a total of 7 
possibilities).

 ✓ m = 1 because the null hypothesis doesn’t specify a value of λ. (In other 
words, you computed the value of λ from the sample data.)

Therefore, k – 1 – m = 7 – 1 – 1 = 5.

You can find the critical value in Table 14-1 by finding the intersection of the 
0.05 right-tail area column and the 5 df row:

The test statistic doesn’t exceed the critical value. Because this is a  
right-tailed test, the correct conclusion is that the null hypothesis can’t be 
rejected. In other words, the number of cellphone calls per hour does follow 
the Poisson distribution.
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Comparing a population to  
the normal distribution
Testing the hypothesis that a population follows the normal distribution  
is similar to testing the hypothesis that a population follows the Poisson  
distribution (see the previous section). The two most important differences 
are that you compute the expected frequencies from the normal distribution, 
and the definition of m is slightly different for the critical value. In this case, 
m is defined as follows:

 ✓ m = 0 if the value of the mean (μ) and standard deviation (σ) are both 
specified in the null hypothesis.

 ✓ m = 1 if the value of the mean or the standard deviation (but not both) is 
specified in the null hypothesis.

 ✓ m = 2 if the value of neither the mean nor the standard deviation are 
specified in the null hypothesis.

As an example, suppose that a portfolio manager wants to determine whether 
the returns to a portfolio are normally distributed, with a mean of 5 percent 
and a standard deviation of 10 percent.

The observed frequencies are 22 for –15 to –5 percent returns, 29 for –5 to 
5 percent returns, 37 for 5 to 15 percent returns, and 12 for 15 to 25 percent 
returns. The null and alternative hypotheses are

 ✓ H0: The population is normally distributed with a mean of 5 percent and 
standard deviation of 10 percent.

 ✓ H1: The population isn’t normally distributed with mean of 5 percent and 
standard deviation of 10 percent.

Assume that the level of significance is 0.05 (5 percent).

You determine the expected frequencies from the standard normal distribution 
by following these steps:

 1. Define X to be the return to a portfolio.

  The mean return is 5 percent and the standard deviation of the return is 
10 percent.

 2. Assume that X is normally distributed.

  To compute probabilities for X using the normal table, you must first 
convert it into a standard normal random variable (I show you how to 
do so in Chapter 9).
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In this example, the returns are normally distributed with a mean of 5 percent 
and a standard deviation of 10 percent. Next, you compute the probability 
that X is between –15 percent and –5 percent.

Because X is a normal random variable but not standard normal, you must 
convert X into the equivalent standard normal form. (Recall that the standard 
normal distribution has a mean of 0 and a standard deviation of 1, as discussed 
in Chapter 9.) The appropriate formula is

In this formula,

μ is the mean of X.

σ is the standard deviation of X.

By converting X into a standard normal random variable, it is now possible to 
compute probabilities for X, using the standard normal tables.

The standard normal tables are set up to compute cumulative probabilities; 
in other words, the probability that Z is less than or equal to a specified 
value.

In this example, you’re looking for the probability that Z is between –2.00 and 
–1.00. This can be computed from the standard normal tables by rewriting 
the expression in the equivalent form:

You can get these probabilities from the standard normal table. See Table 
14-3 for a selection of probabilities associated with negative Z values.

Table 14-3 Selected Standard Normal Probabilities 
 for Negative Z Values
Z 0.00 0.01 0.02 0.03
–2.0 0.0228 0.0222 0.0217 0.0212
–1.5 0.0668 0.0655 0.0643 0.0630
–1.0 0.1587 0.1562 0.1539 0.1515

You find the probability that Z is less than or equal to –1.00 at the intersection 
of the row for –1.0 under the Z column and the 0.00 column, which is 0.1587. 
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Likewise, you find the probability that Z is less than or equal to –2.00 at the 
intersection of the –2.0 row and the 0.00 column, which is 0.0228.

Combining these values gives you 
.

You determine the probability that X is between –5 percent and +5 percent as 
follows.

Algebraically, this is equivalent to

One of the properties of the standard normal distribution is that the  
probability that Z is less than or equal to 0 is 0.5 because the entire area 
under the standard normal curve equals 1 and because the distribution is 
symmetrical about the mean of 0. These statements imply the following:

Based on Table 14-3, the probability that Z is less than or equal to –1.00 = 
0.1587. Therefore, .

You compute the probability that X is between +5 percent and +15 percent as 
follows:

You can rewrite this as .

You can find the probability that Z is less than or equal to 1.00 in the stan-
dard normal table. Take a look at Table 14-4 to see a section of this table for 
positive Z values.

Table 14-4 Selected Standard Normal Probabilities  
 for Positive Z Values
Z 0.00 0.01 0.02 0.03
1.0 0.8413 0.8438 0.8461 0.8485
1.5 0.9332 0.9345 0.9357 0.9370
2.0 0.9772 0.9778 0.9783 0.9788
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You have already determined that the probability that Z is less than or equal 
to 0 equals 0.5. You can see the probability that Z is less than or equal to 
1.00 by intersecting the row for 1.0 and the 0.00 column, which is 0.8413. 
Therefore, .

You determine the probability that X is between +15 percent and +25 percent 
in a similar manner:

 or 

Because the sample size equals 100, the expected frequency of each category 
equals the probability of each category times 100.

P(–15% ≤ X ≤ –5%): 0.1359(100) = 13.59

P(–5% ≤ X ≤ 5%): 0.3413(100) = 34.13

P(5% ≤ X ≤ 15%): 0.3413(100) = 34.13

P(15% ≤ X ≤ 25%): 0.1359(100) = 13.59

You can then combine the observed and expected returns into a single table, 
as Table 14-5 shows.

Table 14-5 Observed and Expected Frequencies
Returns –15% to –5% –5% to 5% 5% to 15% 15% to 25%
Observed 
frequency

22 29 37 12

Expected 
frequency

13.59 34.13 34.13 13.59

Based on this table, the test statistic is computed as follows:

The critical value is determined as follows:



275 Chapter 14: Testing Hypotheses about the Population Mean

The first step is to identify the values of α, λ, and μ.

 ✓ α = 0.05 because you’re using a level of significance of 0.05 (5 percent).

 ✓ λ = 4 because there are four categories of returns: –15 percent to  
–5 percent, –5 percent to +5 percent, +5 percent to +15 percent, and  
+15 percent to +25 percent.

 ✓ m = 0, because the value of the mean (μ) and standard deviation (σ) are 
both specified in the null hypothesis.

Therefore, λ – 1 – μ = 3.

You can find the critical value in Table 14-1 by finding the intersection of the 
0.05 right-tail area column and the 3 df row:

Because this is a right-tailed test, the test statistic must exceed the critical 
value to reject the null hypothesis that the population is normal with a mean 
of 5 percent and a standard deviation of 10 percent. Because the test statistic 
is 6.40 and the critical value is 7.815, you don’t reject the null hypothesis. 
This indicates that the population is, in fact, normally distributed with a 
mean of 5 percent and a standard deviation of 10 percent.

Testing Hypotheses about the Equality  
of Two Population Variances

Hypothesis testing for the equality of two population variances is based on 
the F-distribution (covered in Chapter 13). One of the unique features of the 
F-distribution is that it’s characterized by two types of degrees of freedom, 
known as numerator degrees of freedom and denominator degrees of freedom.

 The degrees of freedom are called numerator and denominator because an F 
random variable is actually the ratio of two chi-square random variables, each 
of which has its own number of degrees of freedom. This is shown in the fol-
lowing equation:

In this expression,

χ1
2, χ2

2 = two chi-square random variables

υ1, υ2, = the degrees of freedom corresponding to χ1
2 and χ2

2
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υ1 = the numerator degrees of freedom of F

υ2 = the denominator degrees of freedom of F

Just like the chi-square distribution, discussed earlier in this chapter, the 
F-distribution isn’t defined for negative values and is skewed to the right.

The basic six-step process you use to test hypotheses about the equality 
of two population variances is the same as for testing hypotheses about a 
single population variance (which I explain in detail in the section “Testing 
Hypotheses about the Population Variance”). The main differences are the 
form of the null and alternative hypotheses and the calculation of the test 
statistic and critical values, which are based on the F-distribution instead of 
the chi-square distribution.

In the following sections, I walk you through testing hypotheses for two  
population variances.

The null hypothesis: Equal variances
The first step in the hypothesis testing procedure is writing the null hypothesis, 
which is a statement that’s assumed to be true unless strong contrary  
evidence exists against it.

In this case, the null hypothesis is written as follows:

 is the variance of population 1, and  is the variance of population 2.

The null hypothesis is that the two population variances are equal. This is 
accepted unless strong evidence indicates otherwise.

The alternative hypothesis:  
Unequal variances
The alternative hypothesis is a statement of what you will accept to be true 
if the null hypothesis is rejected. The alternative hypothesis can take one of 
three forms:

 ✓ Right-tailed test: You use a right-tailed test if you’re interested only in 
knowing whether the variance of population 1 is greater than the  
variance of population 2. In this case, the alternative hypothesis is
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 ✓ Left-tailed test: You use a left-tailed test if you’re interested only in 
knowing whether the variance of population 1 is less than the variance 
of population 2. In this case, the alternative hypothesis is

  

 ✓ Two-tailed test: You use a two-tailed test to determine whether the  
variances of population 1 and 2 are different. In this case, the alternative 
hypothesis is

  

The test statistic
For testing hypotheses about the equality of two population variances, the 
appropriate test statistic is

Here, F indicates that the test statistic follows the F-distribution, s1
2 is the 

variance of the sample drawn from population 1, and s2
2 is the variance of the 

sample drawn from population 2. Note that the test statistic requires that s1
2 

be greater than or equal to s2
2.

The critical value(s)
To test a hypothesis, you have to choose a level of significance. The level of 
significance, designated with α, refers to the probability of rejecting the null 
hypothesis when it’s actually true.

To test a hypothesis about the equality of two population variances, you use 
the following critical values.

Right-tailed test for the F-distribution
A right-tailed test has a single critical value:

 υ1 is the numerator degrees of freedom of the F-distribution and equals n1 – 1, 
where n1 is the size of the sample drawn from population 1. υ2 is the denomi-
nator degrees of freedom of the F-distribution and equals n2 – 1, where n2 is 
the size of the sample drawn from population 2.

This critical value represents the threshold of the right tail of the 
F-distribution with υ21 and υ22 degrees of freedom; the area in the right tail is 
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α. You can find this critical value in an F-table. Because each critical F-value 
requires two types of degrees of freedom, it’s impossible to show both 
degrees of freedom and the level of significance together in the same table. 
Instead, you must dedicate an entire table to a single value of the level of  
significance. (You can see an excerpt of the F-table for a value of α equal to 
0.05 in Table 14-6.)

For example, say you conduct a right-tail test with a level of significance of 
0.05 (5 percent). You draw a sample size of 5 from the first population and a 
sample size of 4 from the second population.

You compute the numerator degrees of freedom by subtracting 1 from the 
size of the sample drawn from population 1:

You find the denominator degrees of freedom by subtracting 1 from the size 
of the sample drawn from population 2:

You can find the appropriate critical value in Table 14-6.

Table 14-6 A Section of the F-Table with α = 0 .05
υ2\υ1 3 4 5 6 7 8 9
3 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 6.59 6.39 6.26 6.16 6.09 6.04 6.00
5 5.41 5.19 5.05 4.95 4.88 4.82 4.77
6 4.76 4.53 4.39 4.28 4.21 4.15 4.10
7 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 4.07 3.84 3.69 3.58 3.50 3.44 3.39
9 3.86 3.63 3.48 3.37 3.29 3.23 3.18

The top row represents the numerator degrees of freedom (υ1). The first 
column represents the denominator degrees of freedom (υ2). In this example, 
you’re looking for a right-tail area of 5 percent with υ1 = n1 – 1 = 5 – 1, which is 
4 numerator degrees of freedom, and υ2 = n2 – 1 = 4 – 1, which is 3 denominator 
degrees of freedom.

You find this critical value at the intersection of the 4 column and the row 
labeled 3 under the υ2/υ1 heading; it equals 9.12.
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Left-tailed test for the F-distribution
A left-tailed test also has a single critical value, represented as

This is a very unusual result. The critical value is the same for a right-tailed 
or a left-tailed test because the F-distribution is undefined for negative 
values. Also, the test statistic is set up with the larger sample variance in the 
numerator. The null hypothesis is rejected when the ratio of the sample  
variances is substantially greater than 1. The test statistic can’t be negative.

Two-tailed test for the F-distribution
A two-tailed test has a single critical value:

The decision about the equality  
of two population variances
You make the decision whether to reject the null hypothesis by looking at the 
relationship between the test statistic and the critical value(s). Here, I break 
down the results of the three alternative hypothesis tests:

 ✓ Right-tailed test: If the test statistic is greater than the critical value ,  
you reject the null hypothesis  in favor of the alternative 
hypothesis ; otherwise, you don’t reject the null hypothesis.

 ✓ Left-tailed test: If the test statistic is greater than the critical value ,  
you reject the null hypothesis  in favor of the alternative 
hypothesis ; otherwise, you don’t reject the null hypothesis.

 ✓ Two-tailed test: If the test statistic is greater than the critical value ,  
you reject the null hypothesis  in favor of the alternative 
hypothesis ; otherwise, you don’t reject the null hypothesis.

As an example, suppose that an investor wants to determine whether two 
portfolios have the same volatility (that is, standard deviation.) She takes a 
sample of ten stocks from each portfolio. The sample standard deviation of 
portfolio 1 is 26 percent, and the sample standard deviation of portfolio 2 is 
24 percent.

The null hypothesis is , and the alternative hypothesis is 
.
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Assume that the level of significance is α = 0.05 (5 percent).

The test statistic is

with s1
2 greater than or equal to s2

2.

Plugging in the numbers, you get the following result:

Because this is a two-tailed test with a 5 percent level of significance, with 
both samples having size 10, the numerator and denominator degrees of  
freedom both equal 9. The critical value is = F9,9

(0.025) (that is, 4.03), as you find 
from the F-table with α = 0.025 (see Table 14-7).

Table 14-7 A Section of the F Table with α = 0 .025 .
υ2\υ1 7 8 9 10

7 4.99 4.90 4.82 4.76
8 4.53 4.43 4.36 4.30
9 4.20 4.10 4.03 3.96
100 3.95 3.85 3.78 3.72

Because the test statistic is 1.174, which is well below the critical value of 
4.03, you don’t reject the null hypothesis. The investor concludes that the 
volatilities of the two portfolios are equal.


